zoukankan      html  css  js  c++  java
  • P4234 最小差值生成树

    传送门

    经典 $LCT$ 题,动态维护生成树

    把边按边权从小到大排序,一条条加入,如果还没联通就直接连,联通了就把原本路径上最小的边替换

    构成树了以后就可以更新答案了

    然后问题来了,怎么动态维护整颗树的最大边权和最小边权

    直接开一个 $multiset$ 就行了......

    聪明的方法是用指向最小的指针加上删除标记维护

    反正我比较笨就直接 $multiset$ 了...

    $LCT$ 为了维护边权所以把边看成点,编号从 $n+1$ 到 $n+m$ ,原本的点为了不影响答案所以把点权置为 $INF$

    具体维护的是一条链上的权值最小的点的编号

    注意有自环!

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<set>
    using namespace std;
    typedef long long ll;
    inline int read()
    {
        int x=0,f=1; char ch=getchar();
        while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
        while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
        return x*f;
    }
    const int N=1e6+7,INF=1e9+7;
    int n,m,ans=233333;
    struct edge{
        int a,b,w;
        inline bool operator < (const edge &tmp) const {
            return w<tmp.w;
        }
    }e[N];
    multiset <edge> S;
    inline void upans() { if(S.size()==n-1) ans=min(ans,(*S.rbegin()).w-(*S.begin()).w); }
    
    int c[N][2],fa[N],val[N],mi[N];
    bool rev[N];
    inline void pushup(int x)
    {
        mi[x]=x;
        if(val[mi[x]]>val[mi[c[x][0]]]) mi[x]=mi[c[x][0]];
        if(val[mi[x]]>val[mi[c[x][1]]]) mi[x]=mi[c[x][1]];
    }
    inline void pushdown(int x)
    {
        if(!rev[x]||!x) return;
        int &lc=c[x][0],&rc=c[x][1];
        swap(lc,rc); rev[x]=0;
        if(lc) rev[lc]^=1;
        if(rc) rev[rc]^=1;
    }
    inline void rever(int x) { rev[x]^=1; pushdown(x); }
    inline bool noroot(int x) { return (c[fa[x]][0]==x)|(c[fa[x]][1]==x); }
    inline void rotate(int x)
    {
        int y=fa[x],z=fa[y],d=(c[y][1]==x);
        if(noroot(y)) c[z][c[z][1]==y]=x;
        fa[x]=z; fa[y]=x; fa[c[x][d^1]]=y;
        c[y][d]=c[x][d^1]; c[x][d^1]=y;
        pushup(y); pushup(x);
    }
    void push_tag(int x)
    {
        if(noroot(x)) push_tag(fa[x]);
        else pushdown(x);
        pushdown(c[x][0]); pushdown(c[x][1]);
    }
    inline void splay(int x)
    {
        push_tag(x);
        while(noroot(x))
        {
            int y=fa[x],z=fa[y];
            if(noroot(y))
            {
                if(c[y][0]==x ^ c[z][0]==y) rotate(x);
                else rotate(y);
            }
            rotate(x);
        }
    }
    inline void access(int x)
    {
        for(int y=0;x;y=x,x=fa[x])
            splay(x),c[x][1]=y,pushup(x);
    }
    inline void makeroot(int x) { access(x); splay(x); rever(x); }
    inline int findroot(int x)
    {
        access(x); splay(x); pushdown(x);
        while(c[x][0]) x=c[x][0],pushdown(x);
        splay(x);
        return x;
    }
    inline int split(int x,int y) { makeroot(x); access(y); splay(y); return mi[y]; }
    inline void link(int x,int y) { makeroot(x); if(findroot(y)!=x) fa[x]=y; }
    inline void cut(int x,int y)
    {
        makeroot(x);
        if(findroot(y)!=x||fa[y]!=x||c[y][0]) return;
        fa[y]=c[x][1]=0; pushup(x);
    }
    
    int main()
    {
        n=read(),m=read();
        for(int i=0;i<=n;i++) val[i]=INF;//注意i=0
        for(int i=1;i<=m;i++) e[i].a=read(),e[i].b=read(),e[i].w=read();
        sort(e+1,e+m+1);
        for(int i=1;i<=m;i++) val[n+i]=e[i].w;
        for(int i=1;i<=m;i++)
        {
            int x=e[i].a,y=e[i].b;
            if(x==y) continue;//一定要特判自环!
            if(findroot(x)!=findroot(y)) { link(x,n+i); link(y,n+i); S.insert(e[i]); upans();/*注意一连成树就要更新答案*/ continue; }
            int t=split(x,y); cut(e[t-n].a,t); cut(e[t-n].b,t); S.erase(S.find(e[t-n]));
            link(x,n+i); link(y,n+i); S.insert(e[i]); upans();
        }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    2020.08.02 周作业简要题解
    Codeforces Round #659【部分题解】
    2020.07.25 周作业简要题解
    我遇到的前端面试题总结(2018)
    React懒加载组件实现
    关于前端中遇到各种高度宽度的总结
    React+Redux项目实战总结
    Redux学习总结
    css学习笔记
    JS学习笔记
  • 原文地址:https://www.cnblogs.com/LLTYYC/p/11175401.html
Copyright © 2011-2022 走看看