经典的最小生成树模型
建一个点 $0$ ,向所有其他点 $x$ 连一条边权为 $c[x]$ 的边,其他任意两点之间连边,边权为 $(k_i+k_j)(left | x_i-x_j ight |+left | y_i-y_j ight |)$
然后用 $prim$ 求个最小生成树即可,然后考虑一下输出方案
多维护一个 $frm[x]$ 表示当前的 $dis[x]$ 是从哪个点贡献来的就行了
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<vector> using namespace std; typedef long long ll; inline int read() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); } return x*f; } const int N=2007; const ll INF=1e18; int n,x[N],y[N],c[N],k[N]; inline ll cst(int i,int j) { return 1ll*(k[i]+k[j])*(abs(x[i]-x[j])+abs(y[i]-y[j])); } ll dis[N],ans; bool vis[N]; vector <int> bas; vector <pair<int,int>> edg; int frm[N]; void Prim() { for(int i=1;i<=n;i++) dis[i]=c[i]; for(int I=1;I<=n;I++) { ll mx=INF; int pos=-1; for(int i=1;i<=n;i++) if(!vis[i]&&dis[i]<mx) mx=dis[i],pos=i; vis[pos]=1; ans+=mx; if(!frm[pos]) bas.push_back(pos); else edg.push_back(make_pair(frm[pos],pos)); for(int i=1;i<=n;i++) if(!vis[i]&&dis[i]>cst(pos,i)) dis[i]=cst(pos,i),frm[i]=pos; } } int main() { n=read(); for(int i=1;i<=n;i++) x[i]=read(),y[i]=read(); for(int i=1;i<=n;i++) c[i]=read(); for(int i=1;i<=n;i++) k[i]=read(); Prim(); printf("%lld ",ans); printf("%d ",int(bas.size())); for(auto x: bas) printf("%d ",x); puts(""); printf("%d ",int(edg.size())); for(auto t: edg) printf("%d %d ",t.first,t.second); return 0; }