zoukankan      html  css  js  c++  java
  • Tensorflow--基本数据结构与运算

    Tensorflow–基本数据结构与运算

    Tensor是Tensorflow中最基础,最重要的数据结构,常翻译为张量,是管理数据的一种形式

    一.张量

    1.张量的定义

    所谓张量,可以理解为n维数组或者矩阵,Tensorflow提供函数:

    constant(value,dtype=None,shape=None,name="Const",verify_shape=False)
    

    2.Tensor与Numpy的ndarray转换

    Tensor转换为ndarray

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t=tf.constant([1,2,3],tf.float32)
    
    session=tf.Session()
    
    array=session.run(t)
    
    print(type(array))
    print(array)
    
    <class 'numpy.ndarray'>
    [ 1.  2.  3.]
    

    也可以先创建会话,然后利用Tensor的成员函数eval,将Tensor转换为ndarray,代码如下;

    session=tf.Session()
    array=t.eval(session=session)
    print(array)
    

    以上代码的另一种写法如下:

    with tf.Session() as session:
        array=t.eval()
        print(array)
    

    ndarray 转换为 Tensor

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    import numpy as np
    
    array=np.array([1,2,3],np.float32)
    
    t=tf.convert_to_tensor(array,tf.float32,name="t")
    
    print(t)
    
    Tensor("t:0", shape=(3,), dtype=float32)
    

    3.张量的尺寸

    张量的尺寸,又称张量的形状

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t=tf.constant(
        [
            [1,2,3],
            [4,5,6]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    s=tf.shape(t)
    print("张量的形状:",session.run(s))
    
    张量的形状: [2 3]
    

    利用成员函数get_shape()或者成员变量shape得到张量的尺寸

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t=tf.constant(
        [
            [1,2,3],
            [4,5,6]
        ],
        tf.float32
    )
    
    s=t.get_shape()
    
    print("s的值:",s)
    print(type(s))
    
    print("s[0]的值:",s[0])
    print("s[0]的数据结构类型:",type(s[0]))
    
    print("将s[0]的值转换为整数型:")
    print(s[0].value)
    print(type(s[0].value))
    
    s的值: (2, 3)
    <class 'tensorflow.python.framework.tensor_shape.TensorShape'>
    s[0]的值: 2
    s[0]的数据结构类型: <class 'tensorflow.python.framework.tensor_shape.Dimension'>
    将s[0]的值转换为整数型:
    2
    <class 'int'>
    

    4.图像转换为张量

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    image=tf.read_file("LQ6H.png","r")
    
    image_tensor=tf.image.decode_jpeg(image)
    
    shape=tf.shape(image_tensor)
    
    session=tf.Session()
    
    print("图像的形状:",session.run(shape))
    
    image_ndarray=image_tensor.eval(session=session)
    
    plt.imshow(image_ndarray)
    plt.show()
    
    图像的形状: [180 180   3]
    

    output_15_1.png

    二.随机数

    Tensorflow提供了很多产生不同概率分布的随机数的函数,如产生均匀分布随机数的函数random_uniform,产生正态分布随机数的函数random_norm,产生泊松分布随机数和正态分布随机数

    1.平均分布随机数

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    x=tf.random_uniform([10,4,20,5],minval=0,maxval=10,dtype=tf.float32)
    
    session=tf.Session()
    
    array=session.run(x)
    
    array1d=array.reshape([-1])
    
    plt.hist(array1d)
    plt.show()
    

    output_17_0.png

    2.态(高斯)分布随机数

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    import math
    
    sigma=1
    mu=10
    
    result=tf.random_normal([10,4,20,5],mu,sigma,tf.float32)
    session=tf.Session()
    
    array=session.run(result)
    
    array1d=array.reshape([-1])
    
    histogram,bins,patch=plt.hist(array1d,25,facecolor="gray",alpha=0.5,normed=True)
    
    x=np.arange(5,15,0.01)
    
    y=1.0/(math.sqrt(2*np.pi)*sigma)*np.exp(-np.power(x-mu,2.0)/(2*math.pow(sigma,2)))
    
    plt.plot(x,y)
    plt.show()
    
    E:Anacondaenvsmytensorflowlibsite-packagesmatplotlibaxes\_axes.py:6521: MatplotlibDeprecationWarning: 
    The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
      alternative="'density'", removal="3.1")
    

    output_19_1.png

    三.单个张量的运算

    1.改变张量的数据类型

    数值型转换为bool型

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t=tf.constant(
        [
            [0,2,0],
            [0,0,1]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    r=tf.cast(t,tf.bool)
    
    print(session.run(r))
    
    [[False  True False]
     [False False  True]]
    

    bool型转换为数值型

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t=tf.constant(
        [
            [False,True,False],
            [False,False,True]
        ]
        ,tf.bool
    )
    
    session=tf.Session()
    
    r=tf.cast(t,tf.float32)
    
    print(session.run(r))
    
    [[ 0.  1.  0.]
     [ 0.  0.  1.]]
    

    2.访问张量中某一个区域的值

    一维张量中某一个区域的值

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t1=tf.constant([1,2,3,4,5],tf.float32)
    
    t=tf.slice(t1,[1],[3])
    
    session=tf.Session()
    
    print(session.run(t))
    
    [ 2.  3.  4.]
    

    二维张量中某个区域的值

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t2=tf.constant(
        [
            [1,2,3,4],
            [5,6,7,8],
            [9,10,11,12]
        ]
        ,tf.float32
    )
    
    t=tf.slice(t2,[0,1],[2,2])
    
    session=tf.Session()
    
    print(session.run(t))
    
    [[ 2.  3.]
     [ 6.  7.]]
    

    三维张量中某个区域的值

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t3d=tf.constant(
        [
            [[2,5],[3,3],[8,2]],
            [[6,1],[1,2],[5,4]],
            [[7,9],[2,-3],[-1,3]]
        ]
        ,tf.float32
    )
    
    t=tf.slice(t3d,[1,0,1],[2,2,1])
    
    session=tf.Session()
    
    print(session.run(t))
    
    [[[ 1.]
      [ 2.]]
    
     [[ 9.]
      [-3.]]]
    

    3.转置

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    x=tf.constant(
        [
            [1,2,3],
            [4,5,6]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    r=tf.transpose(x,perm=[1,0])
    
    print(session.run(r))
    
    [[ 1.  4.]
     [ 2.  5.]
     [ 3.  6.]]
    
    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    x=tf.constant(
        [
            [[2,5],[3,4],[8,2]],
            [[6,1],[1,2],[5,4]]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    r=tf.transpose(x,perm=[1,0,2])
    
    print(session.run(r))
    
    [[[ 2.  5.]
      [ 6.  1.]]
    
     [[ 3.  4.]
      [ 1.  2.]]
    
     [[ 8.  2.]
      [ 5.  4.]]]
    

    4.改变形状

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t3d=tf.constant(
        [
            [[1,2],[4,5],[6,7]],
            [[8,9],[10,11],[12,13]]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    t1=tf.reshape(t3d,[4,1,-1])
    
    print(session.run(t1))
    
    [[[  1.   2.   4.]]
    
     [[  5.   6.   7.]]
    
     [[  8.   9.  10.]]
    
     [[ 11.  12.  13.]]]
    

    注意程序中t1=tf.reshape(t3d,[4,1,-1])等价于t1=tf.reshape(t3d,[4,1,3])

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t4d=tf.constant(
        [
            [
                [[2,5],[3,3],[8,2]],
                [[6,1],[1,2],[5,4]]
            ],
            [
                [[1,2],[3,6],[1,2]],
                [[3,1],[1,2],[2,1]]
            ]
        ]
        ,tf.float32
    )
    
    t2d=tf.reshape(t4d,[2,-1])
    #t2d=tf.reshape(t4d,[-1,3*3*2])
    
    session=tf.Session()
    
    print(session.run(t2d))
    
    [[ 2.  5.  3.  3.  8.  2.  6.  1.  1.  2.  5.  4.]
     [ 1.  2.  3.  6.  1.  2.  3.  1.  1.  2.  2.  1.]]
    

    5.归约运算

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t1d=tf.constant([3,4,1,5],tf.float32)
    
    sum0=tf.reduce_sum(t1d)
    # sum0=tf.reduce_sum(t1d,axis=0)
    
    session=tf.Session()
    
    print(session.run(sum0))
    
    13.0
    
    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    value2d=tf.constant(
        [
            [5,1,4,2],
            [3,9,5,7]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    sum0=tf.reduce_sum(value2d,axis=0)
    print("沿0轴方向的和:")
    print(session.run(sum0))
    
    sum1=tf.reduce_sum(value2d,axis=1)
    print("沿1轴方向的和:")
    print(session.run(sum1))
    
    sum01=tf.reduce_sum(value2d,axis=(0,1))
    print("沿(0,1)平面的和:")
    print(session.run(sum01))
    
    沿0轴方向的和:
    [  8.  10.   9.   9.]
    沿1轴方向的和:
    [ 12.  24.]
    沿(0,1)平面的和:
    36.0
    

    四.对个张量之间的运算

    1.二维张量的加法

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    value1=tf.constant(
        [
            [1,2,3],
            [4,5,6]
        ]
        ,tf.float32
    )
    
    value2=tf.constant(
        [
            [10],
            [20]
        ]
        ,tf.float32
    )
    
    result=tf.add(value1,value2)
    
    session=tf.Session()
    
    print(session.run(result))
    
    [[ 11.  12.  13.]
     [ 24.  25.  26.]]
    

    2.乘法

    Tensorflow除了提供乘法函数multiply,还提供关于矩阵(二维张量)乘法的函数matmul

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    x=tf.constant(
        [
            [1,2],
            [3,4]
        ]
        ,tf.float32
    )
    
    w=tf.constant([[-1],[-2]],tf.float32)
    
    y=tf.matmul(x,w)
    
    session=tf.Session()
    
    print(session.run(y))
    
    [[ -5.]
     [-11.]]
    

    3.张量的堆叠

    一维张量的堆叠

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t1=tf.constant([1,2,3],tf.float32)
    
    t2=tf.constant([7,8,9],tf.float32)
    
    t=tf.stack([t1,t2],0)
    
    session=tf.Session()
    
    print(session.run(t))
    
    [[ 1.  2.  3.]
     [ 7.  8.  9.]]
    

    二维张量的堆叠

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    t1=tf.constant(
        [
            [11,12,13],
            [14,15,16]
        ]
        ,tf.float32
    )
    
    t2=tf.constant(
        [
            [4,5,6],
            [7,8,9]
        ]
        ,tf.float32
    )
    
    session=tf.Session()
    
    t=tf.stack([t1,t2],1)
    
    print(session.run(t))
    
    [[[ 11.  12.  13.]
      [  4.   5.   6.]]
    
     [[ 14.  15.  16.]
      [  7.   8.   9.]]]
    

    五.占位符(placeholder)

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    import numpy as np
    
    x=tf.placeholder(tf.float32,[2,None],name="x")
    
    w=tf.constant(
        [
            [1,2],
            [3,4],
            [5,6]
        ]
        ,tf.float32
    )
    
    y=tf.matmul(w,x)
    
    session=tf.Session()
    
    result1=session.run(y,feed_dict={x:np.array([[2,1],[1,2]],np.float32)})
    print(result1)
    
    result2=session.run(y,feed_dict={x:np.array([[-1],[2]],np.float32)})
    print(result2)
    
    [[  4.   5.]
     [ 10.  11.]
     [ 16.  17.]]
    [[ 3.]
     [ 5.]
     [ 7.]]
    

    六.Variable对象

    Tensor对象的值是不可变的,Tensor类并没有提供任何成员函数改变其值,而且无法用同一个Tensor对象记录一个随时变化的值。Tensorflow中的Variable类可以解决该问题,保存随时变化的值

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    # Author LQ6H
    
    import tensorflow as tf
    
    v=tf.Variable(tf.constant([2,3],tf.float32))
    
    session=tf.Session()
    
    session.run(tf.global_variables_initializer())
    
    print("v初始化的值")
    print(session.run(v))
    
    session.run(v.assign_add([10,20]))
    print("v的当前值")
    print(session.run(v))
    
    v初始化的值
    [ 2.  3.]
    v的当前值
    [ 12.  23.]
    

    注意:创建Variable对象后,要调用方法global_variables_initializer(),才可以使用Variable对象的值,否则会报错

  • 相关阅读:
    Javascript的ajax
    关于跨模块拿取数据的思路AJAX实现
    JAVA的整型与字符串相互转换
    接口返回数据和数组
    接口返回数据是一条数据和一个数组的区别
    最初的代码
    http发送请求方式;分为post和get两种方式
    Java学习---- 数组的引用传递
    Java学习--数组与方法
    Java学习--数组的定义和使用
  • 原文地址:https://www.cnblogs.com/LQ6H/p/10331440.html
Copyright © 2011-2022 走看看