zoukankan      html  css  js  c++  java
  • cs20_1-1

    1. 基本特点

    1.1 save computation(惰性运行)

    x = 2
    y = 3
    add_op = tf.add(x, y)
    mul_op = tf.multiply(x, y)
    useless = tf.multiply(x, add_op)
    pow_op = tf.pow(add_op, mul_op)
    with tf.Session() as sess:
    	z = sess.run(pow_op)
    

    如上,因为sess.run(pow_op)不需要用到useless,所以useless的运算不会被执行(save computation)

    1.2 Distributed Computation

    1. 大图分解为子图多GPU并行计算, e.g.

      freamework举例

    2. Multiple graphs有很多问题,如果非要实现Multiple graphs,可以考虑It’s better to have disconnected subgraphs within one graph

    3. 创建一个Graph

      some codes,待整理

    4. Why Graph:

      1. Save computation. Only run subgraphs that lead to the values you want to fetch.
      2. Break computation into small, differential pieces to facilitate auto-differentiation
      3. Facilitate distributed computation, spread the work across multiple CPUs, GPUs, TPUs, or other devices
      4. Many common machine learning models are taught and visualized as directed graphs
  • 相关阅读:
    Constructor构造方法
    overload重载
    static关键字
    this关键字
    继承
    ORACLE数据库 常用命令和Sql常用语句
    常见单词
    L贪心基础
    J贪心
    K贪心
  • 原文地址:https://www.cnblogs.com/LS1314/p/10366146.html
Copyright © 2011-2022 走看看