zoukankan      html  css  js  c++  java
  • 2-ML的分类

    1. ML的基本分类:

    1.1 不同的(y)类型:

    • 二元分类:
    • 多元分类:
    • 回归:
    • 结构学习:

    1.2 是否有(y)

    • 有监督(supervised):
      Coin Recognition:every (x_n) comes with corresponding (y_n)

    • 无监督(unsupervised):


    • 半监督(semi-supervised):
      Semi-supervised: Coin Recognition with Some yn

    • 强化学习(reinforcement):


    1.3 不同的学习策略(用户和机器的交互方式):

    • 批处理(batch learning):
      batch supervised multiclass classification: learn from all known data

    • 在线学习(online learning):
      尤其适用于结合流式计算,即数据是逐个产生,串行输入,无法batch

      【注】:

    1. 联想PLA的最简单实现版本,就是online-learning:每次发现一个点犯错,就立刻修改(w),知错就改
    2. reinforcement learning is often done online :因为需要逐步修正model
    3. online hypothesis ‘improves’ through receiving data instances sequentially
    • Active(主动学习):
      improve hypothesis with fewer labels (hopefully) by asking questions strategically

    1.4 不同的输入空间(mathcal{X})

    • concrete faeture:
      concrete features: each dimension of (X ⊆ R^d) represents 'sophisticated' physical meaning

    • Raw Features:
      such as Digit Recognition Problem,raw input space like this,

    • Other Problems with Raw Features: image pixels, speech signal, etc.
    • raw features: often need human or machines to convert to concrete ones.

    • Abstract Features:
      abstract: again need ‘feature conversion/extraction/construction’

    2. 总结:

  • 相关阅读:
    吴军博士《浪潮之巅》
    第十二周
    第十一周
    第十周
    第九周
    第四次作业
    第四周
    学习进度表
    世界是数字的
    第二阶段团队第八天成果。
  • 原文地址:https://www.cnblogs.com/LS1314/p/9173960.html
Copyright © 2011-2022 走看看