zoukankan      html  css  js  c++  java
  • [CF1142B] Lynyrd Skynyrd

    问题描述

    Recently Lynyrd and Skynyrd went to a shop where Lynyrd bought a permutation p of length n, and Skynyrd bought an array a of length mm, consisting of integers from 1 to n.

    Lynyrd and Skynyrd became bored, so they asked you q queries, each of which has the following form: "does the subsegment of a from the l-th to the r-th positions, inclusive, have a subsequence that is a cyclic shift of p?" Please answer the queries.

    A permutation of length n is a sequence of n integers such that each integer from 1 to n appears exactly once in it.

    A cyclic shift of a permutation (p1,p2,…,pn) is a permutation (pi,pi+1,…,pn,p1,p2,…,pi−1)for some ii from 1 to n. For example, a permutation (2,1,3) has three distinct cyclic shifts: (2,1,3), (1,3,2), (3,2,1).

    A subsequence of a subsegment of array a from the l-th to the r-th positions, inclusive, is a sequence ai1,ai2,…,aik for some i1,i2,…,i such that l≤i1<i2<…<ik≤r.

    输入格式

    The first line contains three integers n , m , q(( 1 le n, m, q le 2 cdot 10^5 )) — the length of the permutation p , the length of the array a and the number of queries.

    The next line contains n integers from 1 to n , where the i-th of them is the i -th element of the permutation. Each integer from 1 to n appears exactly once.

    The next line contains m integers from 1 to n, the i -th of them is the i-th element of the array a .

    The next q lines describe queries. The i -th of these lines contains two integers li and ri ($ 1 le l_i le r_i le m )$, meaning that the i -th query is about the subsegment of the array from the li-th to the ri-th positions, inclusive.

    输出格式

    Print a single string of length q , consisting of 0 and 1 , the digit on the i -th positions should be 1 , if the subsegment of array a from the li-th to the ri-th positions, inclusive, contains a subsequence that is a cyclic shift of p , and 0 otherwise.

    题目翻译

    洛谷

    解析

    可以观察到一个性质:一个循环排列除了开头的元素,其余元素前面是哪个数是唯一的。所以,我们利用这一点,设(to[i])表示元素i在排列中的下一个数是什么。如果i是最后一个,(to[i])就是第一个。对于原来的序列a的每一个元素(a[i]),都从后面最近的(to[a[i]])的位置向i连一条有向边。位置最近是为了保证回答询问时尽可能的合法。

    可以发现,最后得到的是一个森林。只要从根节点遍历每一棵树,用一个栈记录当前在递归中的点。如果点的数量大于等于 n,说明找到了一个合法的循环排列,开头的位置是(s[top-n+1]),那么离开头最近的循环排列的结束位置就是当前点。

    有了这些信息,我们可以回答每一个询问了。记(minp[i])表示以i为起点的循环排列最近的结束位置。对minp做后缀最小值,那么(minp[i])就表示i之后最近的循环排列结束在哪里。对于每个询问,只要看(minp[l])是否小于等于(r)即可。

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #define N 200002
    using namespace std;
    int head[N],ver[N*2],nxt[N*2],l;
    int n,m,q,i,p[N],a[N],minp[N],pos[N],to[N],top,s[N];
    bool vis[N];
    int read()
    {
    	char c=getchar();
    	int w=0;
    	while(c<'0'||c>'9') c=getchar();
    	while(c<='9'&&c>='0'){
    		w=w*10+c-'0';
    		c=getchar();
    	}
    	return w;
    }
    void insert(int x,int y)
    {
    	l++;
    	ver[l]=y;
    	nxt[l]=head[x];
    	head[x]=l;
    }
    void dfs(int x)
    {
    	vis[x]=1;
    	s[++top]=x;
    	if(top>=n) minp[x]=s[top-n+1];
    	for(int i=head[x];i;i=nxt[i]){
    		int y=ver[i];
    		if(!vis[y]) dfs(y);
    	}
    	top--;
    }
    int main()
    {
    	n=read();m=read();q=read();
    	for(i=1;i<=n;i++) p[i]=read();
    	for(i=1;i<=m;i++) a[i]=read();
    	for(i=1;i<=n;i++) to[p[i]]=p[i%n+1];
    	for(i=m;i>=1;i--){
    		if(pos[a[i]]==0||pos[a[i]]>i) pos[a[i]]=i;
    		if(pos[to[a[i]]]!=0){
    			insert(pos[to[a[i]]],i);
    		}
    	}
    	memset(minp,0x3f,sizeof(minp));
    	for(i=m;i>=1;i--){
    		if(!vis[i]) dfs(i);
    	}
    	for(i=m-1;i>=1;i--) minp[i]=min(minp[i],minp[i+1]);
    	for(i=1;i<=q;i++){
    		int l=read(),r=read();
    		if(minp[l]<=r) printf("1");
    		else printf("0");
    	}
    	return 0;
    }
    
  • 相关阅读:
    元素的ID和Name有什么区别???[转自"天道酬勤"]
    招聘时会问到的问题
    关于asp.net开发B/S应用系统的思索和讨论
    软件文档知多少?
    C# 编码规范和编程好习惯
    [转]多层结构来开发ASP.NET程序
    ASP.NET页面间的传值的几种方法
    为sql server 表数据生成创建的储存过程(生成insert 脚本)
    XHTML+CSS应用教程——利用CSS实现双语导航条
    XHTML+CSS应用教程——CSS实现文字的双影
  • 原文地址:https://www.cnblogs.com/LSlzf/p/11725736.html
Copyright © 2011-2022 走看看