zoukankan      html  css  js  c++  java
  • apache commons math 示例代码

         apache commons Math是一组偏向科学计算为主的函数,主要是针对线性代数,数学分析,概率和统计等方面。

         我虽然是数学专业毕业,当年也是抱着《数学分析》啃,但是好久不用,这些概念都开始生疏,写一点例子,仅作参考。

      1 packagetest.ffm83.commons.math;
      2 
      3 importorg.apache.commons.math3.linear.Array2DRowRealMatrix; 
      4 
      5 import org.apache.commons.math3.linear.LUDecomposition; 
      6 
      7 importorg.apache.commons.math3.linear.RealMatrix; 
      8 
      9 importorg.apache.commons.math3.stat.descriptive.moment.GeometricMean; 
     10 
     11 importorg.apache.commons.math3.stat.descriptive.moment.Kurtosis; 
     12 
     13 importorg.apache.commons.math3.stat.descriptive.moment.Mean; 
     14 
     15 importorg.apache.commons.math3.stat.descriptive.moment.Skewness; 
     16 
     17 importorg.apache.commons.math3.stat.descriptive.moment.StandardDeviation; 
     18 
     19 importorg.apache.commons.math3.stat.descriptive.moment.Variance; 
     20 
     21 import org.apache.commons.math3.stat.descriptive.rank.Max; 
     22 
     23 importorg.apache.commons.math3.stat.descriptive.rank.Min; 
     24 
     25 importorg.apache.commons.math3.stat.descriptive.rank.Percentile; 
     26 
     27 importorg.apache.commons.math3.stat.descriptive.summary.Product; 
     28 
     29 importorg.apache.commons.math3.stat.descriptive.summary.Sum; 
     30 
     31 importorg.apache.commons.math3.stat.descriptive.summary.SumOfSquares;
     32 
     33  
     34 
     35 /**
     36 
     37  * 简单使用commons Math方法
     38 
     39  * @author 范芳铭
     40 
     41  */
     42 
     43 public class MathUsage {
     44 
     45      public static void main(String[] args) { 
     46 
     47         double[] values = new double[] { 0.33, 1.33,0.27333, 0.3, 0.501, 
     48 
     49                 0.444, 0.44, 0.34496, 0.33,0.3, 0.292, 0.667 }; 
     50 
     51         Min min = new Min(); 
     52 
     53         Max max = new Max(); 
     54 
     55          
     56 
     57         Mean mean = new Mean(); // 算术平均值 
     58 
     59         Product product = new Product();//乘积 
     60 
     61         Sum sum = new Sum(); 
     62 
     63         Variance variance = new Variance();//方差 
     64 
     65         System.out.println("min: " +min.evaluate(values)); 
     66 
     67         System.out.println("max: " +max.evaluate(values)); 
     68 
     69         System.out.println("mean: " +mean.evaluate(values)); 
     70 
     71         System.out.println("product:" + product.evaluate(values)); 
     72 
     73         System.out.println("sum: " +sum.evaluate(values)); 
     74 
     75         System.out.println("variance:" + variance.evaluate(values)); 
     76 
     77  
     78 
     79         Percentile percentile = newPercentile(); // 百分位数 
     80 
     81         GeometricMean geoMean = newGeometricMean(); // 几何平均数,n个正数的连乘积的n次算术根叫做这n个数的几何平均数 
     82 
     83         Skewness skewness = new Skewness(); //Skewness(); 
     84 
     85         Kurtosis kurtosis = new Kurtosis(); //Kurtosis,峰度 
     86 
     87         SumOfSquares sumOfSquares = newSumOfSquares(); // 平方和 
     88 
     89         StandardDeviation StandardDeviation =new StandardDeviation();//标准差 
     90 
     91         System.out.println("80 percentilevalue: " 
     92 
     93                 + percentile.evaluate(values,80.0)); 
     94 
     95         System.out.println("geometricmean: " + geoMean.evaluate(values)); 
     96 
     97         System.out.println("skewness:" + skewness.evaluate(values)); 
     98 
     99         System.out.println("kurtosis:" + kurtosis.evaluate(values)); 
    100 
    101         System.out.println("sumOfSquares:" + sumOfSquares.evaluate(values)); 
    102 
    103        System.out.println("StandardDeviation: " +StandardDeviation.evaluate(values)); 
    104 
    105          
    106 
    107        System.out.println("-------------------------------------"); 
    108 
    109         // Create a real matrix with two rowsand three columns 
    110 
    111         double[][] matrixData = { {1d,2d,3d},{2d,5d,3d}}; 
    112 
    113         RealMatrix m = newArray2DRowRealMatrix(matrixData); 
    114 
    115         System.out.println(m); 
    116 
    117         // One more with three rows, twocolumns 
    118 
    119         double[][] matrixData2 = { {1d,2d},{2d,5d}, {1d, 7d}}; 
    120 
    121         RealMatrix n = newArray2DRowRealMatrix(matrixData2);         
    122 
    123         // Note: The constructor copies  the input double[][] array.          
    124 
    125         // Now multiply m by n 
    126 
    127         RealMatrix p = m.multiply(n); 
    128 
    129        System.out.println("p:"+p); 
    130 
    131        System.out.println(p.getRowDimension());    // 2 
    132 
    133        System.out.println(p.getColumnDimension()); // 2          
    134 
    135         // Invert p, using LUdecomposition 
    136 
    137         RealMatrix pInverse = newLUDecomposition(p).getSolver().getInverse(); 
    138 
    139         System.out.println(pInverse); 
    140 
    141     } 
    142 
    143 }
    144 
    145 运行结果如下:
    146 
    147 min: 0.27333
    148 
    149 max: 1.33
    150 
    151 mean: 0.46269083333333333
    152 
    153 product: 2.3429343978460972E-5
    154 
    155 sum: 5.552289999999999
    156 
    157 variance: 0.08757300031742428
    158 
    159 80 percentile value: 0.5674000000000001
    160 
    161 geometric mean: 0.4112886050879374
    162 
    163 skewness: 2.670095445623868
    164 
    165 kurtosis: 7.718241303328169
    166 
    167 sumOfSquares: 3.5322966905000004
    168 
    169 StandardDeviation: 0.2959273564870681
    170 
    171 -------------------------------------
    172 
    173 Array2DRowRealMatrix{{1.0,2.0,3.0},{2.0,5.0,3.0}}
    174 
    175 p:Array2DRowRealMatrix{{8.0,33.0},{15.0,50.0}}
    176 
    177 2
    178 
    179 2
    180 
    181 Array2DRowRealMatrix{{-0.5263157895,0.3473684211},{0.1578947368,-0.0842105263}}
  • 相关阅读:
    freemaker获取字符串长度
    freemarker截取字符串subString
    [转]freemarker中的list
    python常用模块——os模块
    python正则表达式
    需要区分对比的函数以及函数小结
    信道极限容量
    信道和调制
    python中颜色设置
    python中的exec()、eval()以及complie()
  • 原文地址:https://www.cnblogs.com/LT-blogs/p/6249412.html
Copyright © 2011-2022 走看看