zoukankan      html  css  js  c++  java
  • HDOJ 1455 Sticks

    Sticks

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3171 Accepted Submission(s): 780


    Problem Description
    George took sticks of the same length and cut them randomly until all parts became at most 50 units long. Now he wants to return sticks to the original state, but he forgot how many sticks he had originally and how long they were originally. Please help him and design a program which computes the smallest possible original
     length of those sticks. All lengths expressed in units are integers greater than zero.
     


     

    Input
    The input contains blocks of 2 lines. The first line contains the number of sticks parts after cutting, there are at most 64 sticks. The second line contains the lengths
    of those parts separated by the space. The last line of the file contains zero.
     


     

    Output
    The output file contains the smallest possible length of original sticks, one per line.
     


     

    Sample Input
    9 5 2 1 5 2 1 5 2 1 4 1 2 3 4 0
     


     

    Sample Output
    6 5


    #include<iostream>
    #include<algorithm>
    using namespace std;
    int len,num,sum,snum;
    int stickslenth[100];
    int makt[100]; //用于标记木棍是否被使用
    int lim;
    bool cmp(const int a,const int b)
    {
          return a > b;
    }
    bool dfs(int lastlen,int b)
    {
           int i;
          if( -- lim <= 0)
          return false;
         if(lastlen == 0)//一根木棒已经找出
         {
                 i = 0;
                 while(i < num && makt[i])
                 i++;
                 if(i == num)             //当全部的木棍都找出来了的时候则返回真
                       return true;
                 makt[i] = true;          //将第i个数据标记为已经访问过
                if(dfs(len - stickslenth[i],i + 1))      //搜索下一根木棍
                          return true;
                 makt[i] = false;
                 return false;
          }
          int perlen = -1;
          for(i = b; i < num ; ++i)
          {
                 if(makt[i] || lastlen < stickslenth[i] || perlen == stickslenth[i])
                         continue;
                 makt[i] = true;
                 if(dfs(lastlen-stickslenth[i],i+1,t+1))
                          return true;

                  makt[i] = false;

                  perlen = stickslenth[i];

                  if(lastlen == stickslenth[i])
                  return false;
            }
          return false;
    }

    //-------------------------------------------------------------------------------------------------------------
    int main()
    {
            while( cin >> num , num)
             {
                     sum = 0;
                     for(int i = 0; i < num; i++)
                     {
                            cin >> stickslenth[i];
                           sum += stickslenth[i];
                     }
                   sort(stickslenth,stickslenth+num,cmp);
                  /*
                   for(i = 0; i < num ; i++)
                  cout << stickslenth[i] <<  " ";
                  cout << endl;
                */
                   for(len = stickslenth[0]; len < sum; len++)
                   {
                         if(sum % len == 0)//当可以平分为     1156gfddfk;lsdfkl;sdfopksdfsdp[fp[lagsdfksdfdsfsdf
                        {
                                  snum = sum/len;
                                 memset(makt,false,sizeof(makt));
                                if(dfs(len,0,0))
                                      break;
                         }
                  }
                  cout << len << endl; 
             }
             return 0;
    }

  • 相关阅读:
    51Nod 1239 欧拉函数之和
    51Nod 1244 莫比乌斯函数之和
    BZOJ 4805: 欧拉函数求和
    BZOJ 3944: Sum
    3.25阅读摘抄
    生活整洁之道
    1064. 朋友数(20)
    1063. 计算谱半径(20)
    1061. 判断题(15)
    1062. 最简分数(20)
  • 原文地址:https://www.cnblogs.com/LUO257316/p/3220877.html
Copyright © 2011-2022 走看看