zoukankan      html  css  js  c++  java
  • Python_生成器函数进阶_39

    def generator():
        print(123)
        content = yield 1     #content接收的是send传的值
        print('=======',content)
        print(456)
        arg = yield 2
        print('nihao')
        ''''''
        yield
    
    g = generator()
    ret = g.__next__() # 123
    print('***',ret) # *** 1
    ret = g.send('hello')   #send的效果和next一样 
    # print('***',ret)
    g.__next__()

    '''

    123
    *** 1
    ======= hello
    456
    nihao


    '''

    def generator():
        print(123)
        yield 1
        print('=======')
        print(456)
        arg = yield 2
        print('nihao')
        ''''''
        yield
    
    g = generator()
    ret = g.__next__() # 123
    print('***',ret) # *** 1
    ret = g.send(None)   #send的效果和next一样
    # print('***',ret)
    g.__next__()
    
    
    '''
    123
    *** 1
    =======
    456
    nihao
    '''
    def generator():
        print(123)
        content = yield 1
        print('=======',content)
        print(456)
        arg = yield 2
        print('nihao')
        ''''''
        yield
    
    g = generator()
    ret = g.__next__() # 123
    print('***',ret) # *** 1
    ret = g.__next__()   #send的效果和next一样
    print('***',ret)
    g.__next__()
    print('***',ret)

    '''

    *** 1
    ======= None
    456
    *** 2
    nihao
    *** 2

    '''

    #send 获取下一个值的效果和next基本一致
    #只是在获取下一个值的时候,给上一yield的位置传递一个数据
    #使用send的注意事项
    # 第一次使用生成器的时候 是用next获取下一个值
    # 最后一个yield不能接受外部的值

    # 获取移动平均值
    
    # 10 20 30 10
    # 10 15 20 17.5
    #avg = sum/count
    
    def average():
        sum = 0
        count = 0
        avg = 0
        while True:
            num = yield avg
            sum += num    # 10
            count += 1    # 1
            avg = sum/count
    
    avg_g = average()
    avg_g.__next__()
    avg1 = avg_g.send(10)
    avg1 = avg_g.send(20)
    print(avg1)
    #预激生成器的装饰器
    def init(func):   #装饰器
        def inner(*args,**kwargs):
            g = func(*args,**kwargs)    #g = average()
            g.__next__()
            return g
        return inner
    
    @init
    def average():
        sum = 0
        count = 0
        avg = 0
        while True:
            num = yield avg
            sum += num    # 10
            count += 1    # 1
            avg = sum/count
    
    avg_g = average()   #===> inner
    ret = avg_g.send(10)
    print(ret)
    ret = avg_g.send(20)
    print(ret)
    import os
    
    def init(func):
        def wrapper(*args,**kwargs):
            g=func(*args,**kwargs)
            next(g)
            return g
        return wrapper
    
    @init
    def list_files(target):
        while 1:
            dir_to_search=yield
            for top_dir,dir,files in os.walk(dir_to_search):
                for file in files:
                    target.send(os.path.join(top_dir,file))
    @init
    def opener(target):
        while 1:
            file=yield
            fn=open(file)
            target.send((file,fn))
    @init
    def cat(target):
        while 1:
            file,fn=yield
            for line in fn:
                target.send((file,line))
    
    @init
    def grep(pattern,target):
        while 1:
            file,line=yield
            if pattern in line:
                target.send(file)
    @init
    def printer():
        while 1:
            file=yield
            if file:
                print(file)
    
    g=list_files(opener(cat(grep('python',printer()))))
    
    g.send('/test1')
    
    协程应用:grep -rl /dir
    
    tail&grep
    #python 3
    def generator():
        a = 'abcde'
        b = '12345'
        for i in a:
            yield i
        for i in b:
            yield i



    def generator(): a = 'abcde' b = '12345' yield from a yield from b g = generator() for i in g: print(i) # send # send的作用范围和next一模一样 # 第一次不能用send # 函数中的最后一个yield不能接受新的值 # 计算移动平均值的例子 # 预激生成器的装饰器的例子 # yield from

    Eva_J

    https://www.cnblogs.com/Eva-J/p/7277026.html

  • 相关阅读:
    剖析HBase负载均衡和性能指标
    Hadoop大数据挖掘从入门到进阶实战
    实战Kafka ACL机制
    论文笔记系列--MnasNet:Platform-Aware Neural Architecture Search for Mobile
    在 Vim 中优雅地查找和替换
    VIM的列编辑操作
    理解Pytorch中LSTM的输入输出参数含义
    Python为什么要用抽象类(abc模块)?
    概率密度估计介绍
    Docker永久挂载本地目录
  • 原文地址:https://www.cnblogs.com/LXL616/p/10677348.html
Copyright © 2011-2022 走看看