zoukankan      html  css  js  c++  java
  • F1 score意义

    一、四种平均算法

    • 平方平均数:Qn=√ [(a12+a22+...+an2)/n] ——>应用:标准差
    • 算术平均数:An=(a1+a2+...+an)/n ——>1阶平均 ,是加权算数平均的一种特殊形式,缺点:容易受极端值影响
    • 几何平均数:Gn=(a1·a2...an)1/n ——>
    • 调和平均数:Hn=n/(1/a1+1/a2+...+1/an) ——>-1阶平均 ——>调和平均给予较小值更高的权重

    关系满足:调和平均Hn ≤ 几何平均Gn ≤ 算数平均An ≤ 平方平均Qn

    加权算术平均、加权几何平均、算数-几何平均等都是 基于以上4种进一步得来。

    拓展1——>若有两个正实数 x 和 y,那么其算数平均数列{an},几何平均{bn}都会收敛,并收敛至同一实数,这个数称为 x 和 y 的算术-几何平均数,记为 M(x, y) 或 agm(x, y)。

    拓展2——>加权算数平均

    拓展3——>移动平均

    原理:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。

    应用:当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。

    拓展4——>加权调和平均 

    β>1:召回率(Recall)影响更大,eg. F2

    β<1:查准率(Precision)影响更大,eg. F0.5

    β=1:得到 ,即 F1 score。

     

    二、F1 score 

    F1 score是一个平均数,选择了最后一种调和平均数算法进行计算,对精确率P与召回率R 进行平均的一个结果;

    公式: 

    几何意义:图中的直线和各个机器学习PR曲线的交点表示recall和precision的一个“平衡点”,它是另外一种度量方式,即定义F1值

     

    特点:就是会更多聚焦在较低的值,所以会对每个指标非常重视;

    看harmony公式变形:Hn=2*a*b/(a+b);a+b恒等于1,a*b=a*(1-a)=-a^2+a; 令导数为-2a+1=0,a=0.5时值最大;Hn的最大值为0.5,从这里可以看出如果a+b有约束的情况下,a与b的值越接近Hn值越大;

    在F1 sore这里,a与b不存在共同约束,只有0<=a<=1,0<=b<=1,所以最大值不只只是0.5。比如说Hn=2*1*1/(1+1)=1,这也是最完美的,此时,精确率与召回率都是100%;

    【参考】

    【1】算术平均、几何平均、调和平均、平方平均和移动平均

    β<1:查准率(Precision)影响更大,eg. F0.5

    拓展4——>加权调和平均 

    β>1:召回率(Recall)影响更大,eg. F2

    β<1:查准率(Precision)影响更大,eg. F0.5

    β=1:得到 ,即 F1 score

    聪明 皮实 乐观 自省
  • 相关阅读:
    jquery animate() stop() finish() 方法使用
    ant 相关命令
    ant 安装 网址
    邮件
    webdriver until
    python HTML报告
    登录
    yun
    centos7搭建smb服务
    爬取图片
  • 原文地址:https://www.cnblogs.com/zwt20120701/p/15611326.html
Copyright © 2011-2022 走看看