zoukankan      html  css  js  c++  java
  • 排序算法

    常见排序算法C++总结

     

     

    重新画了总结图
    2016-07-15_常用排序算法.png

    看了图,我这里就总结一下 直接插入排序,冒泡排序,快速排序,堆排序和归并排序

    直接插入排序

    整个序列分为有序区和无序区,取第一个元素作为初始有序区,然后第二个开始,依次插入到有序区的合适位置,直到排好序

    刚开始在我那本《数据结构》看到大概这样的实现

    void InsertSort(int arr[], int len) {
        int i, j;
        int temp;
        for (i = 1; i < len; i++) {
            temp = arr[i];
            for (j = i - 1; j >= 0 && arr[j] > temp;j--)
                arr[j + 1] = arr[j];
            arr[j + 1] = temp;
        }
    }
    

    有点难理解,后来又在网上看到这样的实现,这种方式比较好理解

    void InsertSort(int arr[],int n){
        for (int i =1;i <= n;++i){
            for(int j = i;j > 0;--j){
                if(arr[j] < arr[j -1]){
                    int temp = arr[j];
                    arr[j] = arr[j - 1];
                    arr[j - 1] = temp;
                }
            }
        }
    }
    

    原理都是一样的,第一个for循环对从第二个开始的所有的数字遍历,嵌套的for循环是每次遍历数字时都取无序区的一个元素与有序区的元素比较,如果比有序区的要小则交换,直到合适的位置。

    如果使用vector的话会方便一点,因为vector可以使用size()直接获得容器内的元素个数

    void InsertSort2(vector<int> &num){
        for(int i = 1;i < num.size();++i){
            for(int j = i;j > 0;--j){
                if(num[j] < num[j - 1]){
                    int temp = num[j];
                    num[j] = num[j-1];
                    num[j-1] = temp;
                }
            }
        }
    }
    

    插入排序的时间复杂度最好的情况是已经是正序的序列,只需比较(n-1)次,时间复杂度为O(n),最坏的情况是倒序的序列,要比较n(n-1)/2次,时间复杂度为O(n^2 ) ,平均的话要比较时间复杂度为O(n^2 )

    插入排序是一种稳定的排序方法,排序元素比较少的时候很好,大量元素便会效率低下

    这个图很形象,取自维基百科
    2016-07-14_Insertion_sort_animation.gif

    冒泡排序

    比较相邻的元素,如果反序则交换,过程也是分为有序区和无序区,初始时有序区为空,所有元素都在无序区,经过第一趟后就能找出最大的元素,然后重复便可

    void BubbleSort(int arr[], int n)
    {
        for (int i = 0; i < n - 1; i++) {
            for (int j = 0; j < n - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }
    }
    

    冒泡排序感觉非常好理解,第一个for循环是遍历所有元素,第二个for循环是每次遍历元素时都对无序区的相邻两个元素进行一次比较,若反序则交换

    时间复杂度最坏的情况是反序序列,要比较n(n-1)/2次,时间复杂度为O(n^2 ),最好的情况是正序,只进行(n-1)次比较,不需要移动,时间复杂度为O(n),而平均的时间复杂度为O(n^2 )

    图取自维基
    2016-07-14_冒泡排序.gif

    冒泡排序也是一种稳定的排序算法,也是元素较少时效率比较高

    快速排序

    快速排序首先选一个轴值(pivot,也有叫基准的),将待排序记录划分成独立的两部分,左侧的元素均小于轴值,右侧的元素均大于或等于轴值,然后对这两部分再重复,直到整个序列有序

    过程是和二叉搜索树相似,就是一个递归的过程

    排序函数

    QuickSort(int arr[], int first, int end){
     int pivot = OnceSort(arr,first,end);
     //已经有轴值了,再对轴值左右进行递归
     QuickSort(arr,first,pivot-1);
     QuickSort(arr,pivot+1,end);
    

    接下来就是一次排序的函数

    void OnceSort(int arr[], int first, int end){
     int i = first,j = end;
     //当i<j即移动的点还没到中间时循环
     while(i < j){
      //右边区开始,保证i<j并且arr[i]小于或者等于arr[j]的时候就向左遍历
      while(i < j && arr[i] <= arr[j]) --j;
      //这时候已经跳出循环,说明j>i 或者 arr[i]大于arr[j]了,如果i<j那就是arr[i]大于arr[j],那就交换
      if(i < j){
       int temp = arr[i];
       arr[i] = arr[j];
       arr[j] = temp;
      }
      //对另一边执行同样的操作
      while(i < j && arr[i] <= arr[j]) ++i;
      if(i < j){
       int temp = arr[i];
       arr[i] = arr[j];
       arr[j] = temp;
      }
     }
     //返回已经移动的一边当做下次排序的轴值
     return i;
    }
    

    过程解释都写在注释里面了,挺好理解的
    这是我在书上看到的实现,用的是递归的方法
    我在维基上还看到用迭代的方法,这里就不说了,有兴趣的可以去看看

    这个图不是一般的棒!!来自维基
    2016-07-14_Sorting_quicksort_anim.gif

    快速排序时间复杂度的最好情况和平均情况一样为O(nlog2 n),最坏情况下为O(n^2 ),这个看起来比前面两种排序都要好,但是这是不稳定的算法,并且空间复杂度高一点( O(nlog2 n)
    而且快速排序适用于元素多的情况

    堆排序

    堆的结构类似于完全二叉树,每个结点的值都小于或者等于其左右孩子结点的值,或者每个节点的值都大于或等于其左右孩子的值

    堆排序过程将待排序的序列构造成一个堆,选出堆中最大的移走,再把剩余的元素调整成堆,找出最大的再移走,重复直至有序

    来看一下实现

    //堆排序
    void HeapSort(int arr[],int len){
        int i;
        //初始化堆,从最后一个父节点开始
        for(i = len/2 - 1; i >= 0; --i){
            Heapify(arr,i,len);
        }
        //从堆中的取出最大的元素再调整堆
        for(i = len - 1;i > 0;--i){
            int temp = arr[i];
            arr[i] = arr[0];
            arr[0] = temp;
            //调整成堆
            Heapify(arr,0,i);
        }
    }
    

    再看 调整成堆的函数

    void Heapify(int arr[], int first, int end){
        int father = first;
        int son = father * 2 + 1;
        while(son < end){
            if(son + 1 < end && arr[son] < arr[son+1]) ++son;
            //如果父节点大于子节点则表示调整完毕
            if(arr[father] > arr[son]) break;
            else {
             //不然就交换父节点和子节点的元素
                int temp = arr[father];
                arr[father] = arr[son];
                arr[son] = temp;
                //父和子节点变成下一个要比较的位置
                father = son;
                son = 2 * father + 1;
            }
        }
    }
    

    堆排序的时间复杂度最好到最坏都是O(nlogn),较多元素的时候效率比较高

    图来自维基
    2016-07-15_堆排序.gif

    归并排序

    归并排序的基本思想是将若干个序列进行两两归并,直至所有待排序记录都在一个有序序列为止

    这个图很有概括性,来自维基
    2016-07-15_归并排序.gif

    我们也可以用递归的思想,每次合并就是一次递归
    首先,将一整个序列分成两个序列,两个会分成4个,这样分下去分到最小单位,然后开始合并

    void Merge(int arr[], int reg[], int start, int end) {
        if (start >= end)return;
        int len = end - start, mid = (len >> 1) + start;
    
        //分成两部分
        int start1 = start, end1 = mid;
        int start2 = mid + 1, end2 = end;
        //然后合并
        Merge(arr, reg, start1, end1);
        Merge(arr, reg, start2, end2);
    
    
        int k = start;
        //两个序列一一比较,哪的序列的元素小就放进reg序列里面,然后位置+1再与另一个序列原来位置的元素比较
        //如此反复,可以把两个有序的序列合并成一个有序的序列
        while (start1 <= end1 && start2 <= end2)
            reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    
        //然后这里是分情况,如果arr2序列的已经全部都放进reg序列了然后跳出了循环
        //那就表示arr序列还有更大的元素(一个或多个)没有放进reg序列,所以这一步就是接着放
        while (start1 <= end1)
            reg[k++] = arr[start1++];
    
        //这一步和上面一样
        while (start2 <= end2)
            reg[k++] = arr[start2++];
        //把已经有序的reg序列放回arr序列中
        for (k = start; k <= end; k++)
            arr[k] = reg[k];
    }
    
    void MergeSort(int arr[], const int len) {
        //创建一个同样长度的序列,用于临时存放
        int  reg[len];
        Merge(arr, reg, 0, len - 1);
    }
    

    过程解释都写在了注释里

    归并排序的时间复杂度都是O(nlogn),并且适用于元素较多的时候排序

    参考资料

    1 <<数据结构(C++版)>>
    2 维基百科

     

     

     
     
  • 相关阅读:
    jquery
    实现元素垂直居中
    浏览器 标准模式和怪异模式
    cookie session ajax
    React props.children
    使用React.lazy报错Import in body of module; reorder to top import/first
    state 和 props 之间的区别
    Harbor打怪升级
    Centos7下安装yum工具
    正则表达式匹配两个特殊字符中间的内容(特殊字符不显示)
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/5679355.html
Copyright © 2011-2022 走看看