zoukankan      html  css  js  c++  java
  • 排序算法

    常见的排序算法总结(JavaScript)

     

     引言

      排序算法是数据结构和算法之中的基本功,无论是在笔试还是面试,还是实际运用中都有着很基础的地位。这不正直七月,每年校招的备战期,所以想把常见的排序算法记录下来。在本篇文章中的排序算法使用 JavaScript 实现。

     一、 冒泡排序

      冒泡排序是排序算法中最简单的一个算法,其优点是易理解,易实现。在一些对性能要求不高且数据量不大的需求中,冒泡排序是一个很好的选择。

      原理:假设排序顺序为增序,数组长度为 N。数组每相邻两个元素进行比较,大数后移,小数前移,第一轮排序下来就能找到最大的数。也就是比较 A[i] 和 A[i+1] ,将大数后移,随后增加 i 的值,再进行比较。第二轮再对剩余的 N-1 个数进行排序,找出第二大的数,以此类推。同时也可以记录交换次数来进行优化,如果在一层循环之中交换次数为 0,则排序结束。

      下面这张图展示了冒泡排序的全过程:

      下面这张图展示冒泡排序在宏观层面的全过程:

      

    平均时间复杂度 最优时间负复杂度 最坏时间复杂度 空间复杂度
    O(n^2) O(n) O(n^2) O(1)

      

    复制代码
     1 function bubbleSort (arr) {
     2     var swapTime = 0;
     3     for(var i = 0, length1 = arr.length; i < length1; i ++){
     4         for(var j = 0, length2 = length1 - i; j < length2 - 1; j ++){
     5             if(arr[j] > arr[j+1]){
     6                 swapTime++;
     7                 var temp = arr[j];
     8                 arr[j] = arr[j+1];
     9                 arr[j+1] = temp;
    10             }
    11         }
    12         //检查交换次数,如果为0,则当前数组为有序数组;如不为0,则重置
    13         if(swapTime === 0){
    14             break;
    15         }else {
    16             swapTime = 0;
    17         }
    18     }
    19 }
    复制代码

     二、选择排序

      选择排序算法与冒泡排序算法类似,即每一轮找出一个最大值。但和冒泡排序不同的一点是,冒泡排序是采用不停的交换将最大值(最小值)筛选出来,而选择排序是记录下最大值(最小值)的索引。

      原理:假设排序方式为增序,数组长度为 N。设置最大值索引初始值 index = 0,然后遍历数组,记录下最大值的索引,即比较 A[i] 与 A[index] 的值,若 A[i] > A[index] 则更新 index = i。在每一轮遍历结束后,交换 index 位置和末尾位置的值,即交换 A[index] 和 A[i],这样便保证了末尾值是最大值。随后对剩余的 N-1 个数进行同样的方式排序,以此类推。  

      下面这张图展示了选择排序的全过程:

      下面这张图展示了在宏观层面上选择排序的全过程:

    平均时间复杂度 最优时间复杂度 最差时间复杂度 空间复杂度
    O(n^2) O(n^2) O(n^2) O(1)

    复制代码
     1 function selectSort (arr) {
     2     for(var i = 0, length1 = arr.length; i < length1; i ++){
     3         var index = 0
     4         for(var j = 0, length2 = length1 - i; j < length2; j ++){
     5             if(arr[j] > arr[index]){
     6                 index = j;
     7             }
     8         }
     9         var temp = arr[index];
    10         arr[index] = arr[length1 - i - 1];
    11         arr[length1 - i - 1] = temp;
    12     }
    13 }
    复制代码

    三、插入排序

      插入排序的思想是将原始数组划分成两侧,一侧是有序数组,一侧是无序数组。每次取出无序数组的一个元素,将它插入到有序数组的正确位置上,这种方式也会导致有序数组中其插入位置之后的元素全部后移。插入排序的思想类似于我们抓扑克牌。

      原理:假设排序方式为增序,数组长度为 N。初始设 A[0] 为有序数组,A[1] ~ A[N-1] 为无序数组,取出 A[1] 将其插入至有序数组中的正确位置,使得有序数组增大为 A[0] ~ A[1]。继续取 A[2] 将其插入至有序表数组的正确位置,以此类推,直至无序数组取完。

      下面这张图展示了插入排序的全过程:

      下面这张图展示了在宏观层面上插入排序的全过程:

    平均时间复杂度 最优时间复杂度 最差时间复杂度 空间复杂度
    O(n^2) O(n^2) O(n^2) O(1)
    复制代码
     1 function insertSort (arr) {
     2     for(var i = 0, length1 = arr.length; i < length1; i ++){
     3         for(var j = 0, length2 = i + 1; j < length2; j ++){
     4             if(arr[j] > arr[length2]){
     5                 var temp = arr[length2];
     6                 for(var k = length2; k > j; k --){
     7                     arr[k] = arr[k-1];
     8                 }
     9                 arr[j] = temp;
    10             }
    11         }
    12     }
    13 }
    复制代码

     四、 希尔排序

       希尔排序是优化过后的插入,其算法的思想是在插入排序的基础上加上了一个步长 gap,通过步长将数组分成若干个子项,先分别对子项进行插入排序,使得每一个元素朝着最终目的地跨了一大步。然后逐步缩小步长,这种排序算法也是不稳定的。

      原理:假设排序方式为增序,数组长度为 N。首先取步长 gap = N/2,那么便将 N 长度的数组拆分成了 [A[0], A[gap]],[A[1], A[gap+1]],[A[2], A[gap+3]] ... ... [A[gap-1], A[N-1]] 子数组,分别对子数组进行插入排序。随后逐步缩小步长,再进行插入排序,直至步长为 1。

      下面这张图展示了希尔排序的全过程:

      下面这张图展示了希尔排序在宏观上的全过程:

    平均时间复杂度 最优时间复杂度 最差时间复杂度 空间复杂度
    O(nLogn)~O(n^2) O(n^1.3) O(n^2) O(1)
    复制代码
     1 function shellSort(arr) {
     2     var gap = Math.floor(arr.length / 2);
     3     while (gap >= 1) {
     4         for (var i = 0; i < gap; i++) {
     5             for (var j = i; j < arr.length; j += gap) {
     6                 for (var k = i, length = j + gap; k < length; k += gap) {
     7                     if (arr[k] > arr[length]) {
     8                         var temp = arr[length];
     9                         for (var x = length; x > k; x = x - gap) {
    10                             arr[x] = arr[x - gap];
    11                         }
    12                         arr[k] = temp;
    13                     }
    14                 }
    15             }
    16         }
    17         gap = Math.floor(gap / 2);
    18     }
    19 }
    复制代码

    五、归并排序   

      归并排序是分治法思想的典型应用,我们可以把一个 N 规模的问题分解成若干个小规模的子问题,用子问题的解来求解原问题。这同时也涉及到了问题的求解顺序,在动态规划算法中有自顶向下自底向上两种不同的求解顺序。在这里一般采用的是自底向上的求解方法,比如一个 N 长度的数组,我们可以分解成 N/2 个长度为 2 或 1 的子数组,分别对子数组排序,再进行两两相并,直到归并成原始数组。

      原理:假设排序顺序为增序,数组长度为 N。将数组拆分成 N 个长度为 1 的数组。然后相邻子数组进行归并,形成若干个长度为 2 或者 1 的数组,再继续进行归并,直至长度为 N。 

      下面这张图展示了归并的排序的全过程: 

     

      下面这张图展示了在宏观层面上归并排序的全过程:

    平均时间复杂度 最优时间复杂度 最差时间复杂度 空间复杂度
    O(nLogn) O(nLogn) O(nLogn) O(n)
    复制代码
     1 function mergeSort(arr) {
     2     var n = 1;
     3     while (n < arr.length) {
     4         for (var i = 0; i < arr.length; i += n*2) {
     5             var arr1 = arr.slice(i, i+n);
     6             var arr2 = arr.slice(i+n, i+(n*2));
     7             var temp = [];
     8             while(arr1.length != 0 || arr2.length != 0){
     9                 if(arr1.length === 0){
    10                     temp.push(arr2.shift());
    11                     continue;
    12                 }
    13                 if(arr2.length === 0){
    14                     temp.push(arr1.shift());
    15                     continue;
    16                 }
    17                 if(arr1[0] < arr2[0]){
    18                     temp.push(arr1.shift());
    19                 }else{
    20                     temp.push(arr2.shift());
    21                 }
    22             }
    23             arr.splice(i, n*2, ...temp);
    24         }
    25         n = n * 2;
    26     }
    27 }
    复制代码

     六、快速排序

      快速排序同样也使用了分治法的思想,在实际运用中使用的最多的就是快速排序。快速排序的核心思想是运用递归法,在每轮排序时指定一个基数,将基数移动到正确的位置上,然后再把基数的左右两边拆分出来,并分别进行相同的排序处理,直到其子数组长度为 1。其采用的是自顶向下的处理法。

      原理:在每一轮排序中取一个基数 k , 设 i 和 j 分别为数组的最左端和最右端,i 坐标从起始点向 k 点遍历,若找到一个比 k 大的元素,则停下来等待 j 的遍历。 j 坐标从起始点向 k 点遍历,若找到一个比 k 小的元素,则 i 和 j 坐标的元素互相交换。若有一端提前到达了 k 点,则等待满足条件后与另一端坐标交换。当 i 和 j 碰撞时,则为分治点,此时 i 和 j 相碰撞的坐标元素便是它的最终位置,以碰撞点为中心将数组拆分成两段,并进行相同的递归处理。当 i >= j 时,则为回退点

      下面给出一张维基百科上的图,展示了一轮快速排序的过程:

     

      下面这张图展示了一段快速排序的全过程:

      

    平均时间复杂度 最优时间复杂度 最差时间复杂度 空间复杂度
    O(nLogn) O(nLogn) O(n^2) O(1)
    复制代码
     1 function quickSort (arr) {
     2     function sort(array, first, last) {
     3         if (first >= last) {
     4             return;
     5         }
     6         var base = Math.floor((first + last) / 2);
     7         var i = first - 1;
     8         var j = last - 1;
     9         var temp;
    10         while (j > i) {
    11             while (j > i && array[j] > array[base]) {
    12                 j--;
    13             }
    14             while (i < j && array[i] <= array[base]) {
    15                 i++;
    16             }
    17             temp = array[i];
    18             array[i] = array[j];
    19             array[j] = temp;
    20         }
    21         temp = array[base];
    22         array[base] = array[i];
    23         array[i] = temp;
    24         sort(array, first, i);
    25         sort(array, i + 2, last)
    26     }
    27     sort(arr, 1, arr.length);
    28 }
    复制代码

      在这里我们 JavaScript 描绘出快速排序的过程:

     
  • 相关阅读:
    css中盒模型的理解与整理
    Java从入门到精通——数据库篇Mongo DB GridFS文件系统
    Java从入门到精通——数据库篇Mongo DB 导出,导入,备份
    Java从入门到精通——数据库篇Mongo DB 安装启动及配置详解
    MySQL基于mysqldump快速搭建从库
    Linux下C语言操作MySQL数据库
    html dl dt dd 标签语法与使用
    人的一切痛苦,本质上都是对自己的无能的愤怒
    游泳健康好处多
    从疲劳到猝死只需6步!
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/7146843.html
Copyright © 2011-2022 走看看