题解:
裸的最小割。
相邻的块不能被同时选中,所以需要将棋盘分成两类。
一类是$x+y$为奇,一类是$x+y$为偶。
然后一类与$S$建边,一类与$T$建边。
最后最大流。用总和减去最大流(即最小割)即为答案。
代码:
#include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define N 150 #define ll long long const int inf = 0x3f3f3f3f; const ll Inf = 0x3f3f3f3f3f3f3f3fll; inline int rd() { int f=1,c=0;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){c=10*c+ch-'0';ch=getchar();} return f*c; } int n,m,hed[N*N],cur[N*N],cnt=-1,S,T; ll sum; int _id(int x,int y) { return (x-1)*m+y; } struct EG { int to,nxt; ll w; }e[N*N*20]; void ae(int f,int t,ll w) { e[++cnt].to = t; e[cnt].nxt = hed[f]; e[cnt].w = w; hed[f] = cnt; } int dep[N*N]; bool vis[N*N]; queue<int>q; bool bfs() { memset(dep,0x3f,sizeof(dep)); memcpy(cur,hed,sizeof(cur)); dep[S]=0,vis[S]=1;q.push(S); while(!q.empty()) { int u = q.front(); q.pop(); for(int j=hed[u];~j;j=e[j].nxt) { int to = e[j].to; if(e[j].w&&dep[to]>dep[u]+1) { dep[to] = dep[u]+1; if(!vis[to]) { vis[to] = 1; q.push(to); } } } vis[u] = 0; } return dep[T]!=inf; } ll dfs(int u,ll lim) { if(u==T||!lim)return lim; ll fl=0,f; for(int j=cur[u];~j;j=e[j].nxt) { cur[u] = j; int to = e[j].to; if(dep[to]==dep[u]+1&&(f=dfs(to,min(lim,e[j].w)))) { fl+=f,lim-=f; e[j].w-=f,e[j^1].w+=f; if(!lim)break; } } return fl; } ll dinic() { ll ret = 0; while(bfs())ret+=dfs(S,Inf); return ret; } int main() { // freopen("testdata.in","r",stdin); n = rd(),m = rd(); S = n*m+1,T = n*m+2; memset(hed,-1,sizeof(hed)); for(int i=1;i<=n;i++) for(int x,y,c,j=1;j<=m;j++) { c = rd(); sum+=1ll*c; x = _id(i,j); if((i+j)&1) { ae(S,x,c); ae(x,S,0); if(i!=n) { y = _id(i+1,j); ae(x,y,Inf); ae(y,x,0); } if(j!=m) { y = _id(i,j+1); ae(x,y,Inf); ae(y,x,0); } if(i!=1) { y = _id(i-1,j); ae(x,y,Inf); ae(y,x,0); } if(j!=1) { y = _id(i,j-1); ae(x,y,Inf); ae(y,x,0); } }else { ae(x,T,c); ae(T,x,0); } } printf("%lld ",sum-dinic()); return 0; }