zoukankan      html  css  js  c++  java
  • Python程序中的进程操作-进程间数据共享(multiprocess.Manager)

    Python程序中的进程操作-进程间数据共享(multiprocess.Manager)

    一、进程之间的数据共享

    展望未来,基于消息传递的并发编程是大势所趋

    即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

    这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

    但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

    以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

    1.1Manager模块介绍

    进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的。

    虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此。

    A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

    A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

    1.2Manager例子

    from multiprocessing import Manager,Process,Lock
    def work(d,lock):
        with lock:  # 不加锁而操作共享的数据,肯定会出现数据错乱
            d['count']-=1
    
    if __name__ == '__main__':
        lock=Lock()
        with Manager() as m:
            dic=m.dict({'count':100})
            p_l=[]
            for i in range(100):
                p=Process(target=work,args=(dic,lock))
                p_l.append(p)
                p.start()
            for p in p_l:
                p.join()
            print(dic)
    
  • 相关阅读:
    有多少程序员超过四十岁呢?
    乔布斯的演讲技巧:教你站在讲台上怎样化腐朽为神奇
    想要好看的WORDPRESS模板
    多些时间能少写些代码
    java播放au音频程序
    明星软件工程师的10种特质
    中国互联网创业的四个机遇
    Android环境搭建
    想写代码?离开你的电脑吧!
    深讨Java SE 6 在 HTTP 方面的新特性(NTLM)
  • 原文地址:https://www.cnblogs.com/Lin2396/p/11568343.html
Copyright © 2011-2022 走看看