Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 23506 Accepted Submission(s): 9329
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
本題大意:
給出一棵樹,和樹邊長度,給出一系列詢問點,求兩點間的距離。
解題思路:
本題可用Tarjan算法求出根節點到各點的最短距離,然後結合并查集來先求出最近公共祖先(LCA),這樣兩個點之間的距離就可以表示為:根節點到點1的距離 + 根節點到點2的距離 - 兩倍的根節點到LCA的距離。
思想核心是求LCA,所以本文記錄一個用Tarjan結合并查集求LCA的方法。
實現方法:選定一個點為根節點,對樹進行DFS搜索,搜索回溯時把子節點的并查集信息連到父節點上去。在搜索每個點的時候,都檢查是否是詢問點,如果是詢問點,則檢查與之對應的詢問點是否被訪問過,如果訪問過,那麼它的并查集父親必然到知道他們的公共祖先上去,為什麼?這是我參考其他大神代碼的時候思考一段時間才想出來為什麼的。根據DFS搜索的特性,搜索回溯時都把下級的并查集信息往上連,而DFS是深度優先,則回溯距離必然盡可能小,即如果回溯一級就找到另一條路的話,就會繼續往下搜,而如果這兩條路上各存著詢問點對的其中一個,先被搜索到的那個節點的并查集信息只往上并了一級,那就是最近的公共祖先。在處理尋問點對的時候,如果找到這樣的并查集被修改過的(即被訪問過的)的對應點,那就把它們兩個的LCA記下即可。
把整棵樹遍歷完的時候,所有詢問點對的LCA也都求出來了,最後按照尋問順序,按照公式計算并輸出距離即可。
結合一下AC代碼理解:
#include<bits/stdc++.h> using namespace std; #define N 40000 typedef struct Edge { int t,v; int next; }edge; edge E[N*2],e[N*2]; int cnt; int head1[N],head2[N];//head1用于樹上節點的串連,head2用於詢問節點的串連 int dis[N],f[N],vis[N];//dis各點到根節點的距離,f為并查集 int ans[N][3]; //ans[0]和[1]記錄詢問點對,ans[3]記錄他們的公共祖先(LCA) int n,m; void addedge(int u,int v,int d,edge *a,int *head) { a[cnt].t=v; a[cnt].v=d; a[cnt].next=head[u]; head[u]=cnt++; a[cnt].t=u; a[cnt].v=d; a[cnt].next=head[v]; head[v]=cnt++; } int findx(int a)//并查集 { if(a!=f[a]) return f[a]=findx(f[a]); return a; } void getLCA(int p)//Tarjan算法求LCA { vis[p]=1; f[p]=p; //進入時初始化并查集 for(int i=head2[p];i!=-1;i=e[i].next)//檢查詢問點對,是否發現已訪問 { if(vis[e[i].t]) ans[e[i].v][2]=findx(e[i].t); } for(int i=head1[p];i!=-1;i=E[i].next)//DFS搜索 { if(!vis[E[i].t]) { dis[E[i].t]=dis[p]+E[i].v; //更新距離 getLCA(E[i].t); f[E[i].t]=p; //搜索過后更新子節點的并查集 } } } int main() { //freopen("a.txt","r",stdin); int T; scanf("%d",&T); while(T--) { cnt=0; memset(head1,-1,sizeof(head1)); memset(head2,-1,sizeof(head2)); scanf("%d%d",&n,&m); for(int i=1;i<=n-1;i++) { int a,b,v; scanf("%d%d%d",&a,&b,&v); addedge(a,b,v,E,head1); } cnt=0; for(int i=1;i<=m;i++) //先全部記錄后離線處理 { scanf("%d%d",&ans[i][0],&ans[i][1]); addedge(ans[i][0],ans[i][1],i,e,head2); } memset(vis,0,sizeof(vis)); dis[1]=0; getLCA(1); for(int i=1;i<=m;i++) printf("%d ",dis[ans[i][1]]+dis[ans[i][0]]-2*dis[ans[i][2]]); } //最短距離 = 節點1的距離 + 節點2的距離 - 2*LCA的最短距離 } //(這裡最短距離是指到根節點的距離)