zoukankan      html  css  js  c++  java
  • [LeetCode][JavaScript]Range Sum Query 2D

    Range Sum Query 2D - Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12
    

    Note:

    1. You may assume that the matrix does not change.
    2. There are many calls to sumRegion function.
    3. You may assume that row1 ≤ row2 and col1 ≤ col2.

    https://leetcode.com/problems/range-sum-query-2d-immutable/


    矩阵求和,给定数组不会变,求和方法会反复调用多次。

    维护一个数组,dp(i,j)的值就是从(0,0)到(i,j)的和。

    调用sumRegion(row1, col1, row2, col2)时,结果就是dp(row2,col2) - dp(row2,col1 - 1) - dp(row1 - 1,col2) + dp(row1 - 1,col1 - 1)。

      -    -    +  

     1 /**
     2  * @constructor
     3  * @param {number[][]} matrix
     4  */
     5 var NumMatrix = function(matrix) {
     6     this.dp = [];
     7     var i, j, top, rowSum;
     8     var rowLen = matrix[0] ? matrix[0].length : 0;
     9     for(i = 0; i < matrix.length; i++){
    10         rowSum = 0;
    11         for(j = 0; j < rowLen; j++){
    12             if(!this.dp[i]){
    13                 this.dp[i] = [];
    14             }
    15             rowSum += matrix[i][j];
    16             top = this.dp[i - 1] && this.dp[i - 1][j] ? this.dp[i - 1][j] : 0;
    17             this.dp[i][j] = top + rowSum;
    18         }
    19     }
    20 };
    21 
    22 /**
    23  * @param {number} row1
    24  * @param {number} col1
    25  * @param {number} row2
    26  * @param {number} col2
    27  * @return {number}
    28  */
    29 NumMatrix.prototype.sumRegion = function(row1, col1, row2, col2) {
    30     var left = this.dp[row2][col1 - 1] ? this.dp[row2][col1 - 1] : 0;
    31     var top = this.dp[row1 - 1] ? this.dp[row1 - 1][col2] : 0;
    32     var topLeft = this.dp[row1 - 1] && this.dp[row1 - 1][col1 - 1] ? this.dp[row1 - 1][col1 - 1] : 0;
    33     return this.dp[row2][col2] - left - top + topLeft;
    34 };
  • 相关阅读:
    CSP-J2019游记&解题报告
    旋转立方体实现
    博客背景线条实现
    垃圾基数排序
    链表实现队列(指针)
    公共子序列(luogu P1439)
    可并堆(左偏树)
    搜索(靶形数独)
    线段树(压位)luogu P1558色板游戏
    线段树区间取反
  • 原文地址:https://www.cnblogs.com/Liok3187/p/4958928.html
Copyright © 2011-2022 走看看