zoukankan      html  css  js  c++  java
  • 7201. 「JOI 2020 Final」奥运公交

    Description&Data Constraint

    对于全部数据,(2le N le 200,1le M le 5 imes 10^4,1le U_i,V_ile N,U_i ot= V_i,0le C_ile 10^6,0le D_ile 10^9)

    Solution

    首先明确一个性质,翻转的边需要在最短路树上,否则对答案没有贡献。

    首先求出 (1)(i)(i)(n) 的最短路径,并把在最短路树上的边打上标记。

    也求出 (n)(i)(i)(1) 的最短路径,同时打上最短路树的标记。

    具体操作可以建正图和反图共 (4) 个,两个正图,两个反图,正图和反图中各有一个以 (1) 为起点,一个以 (n) 为起点,以不同的起点求出对应的最短路。

    约定:

    1. (1) 为起点的正图为图 (1)。目的是求出 (1)(i) 的最短路。

    2. (n) 为起点的反图为图 (2)。目的是求出 (i)(n) 的最短路。

    3. (n) 为起点的正图为图 (3)。目的是求出 (n)(i) 的最短路。

    4. (1) 为起点的反图为图 (4)。目的是求出 (i)(1) 的最短路。

    5. 一条边的起点是 (x),终点是 (y),权值是 (v)

    令初始答案为在不翻转边下的 (1)(n)(n)(1) 的最短路径和。

    考虑枚举边,对于 (1)(n),如果该边不在图的最短路树上,就返回原值,否则将此边翻转跑最短路。

    对于翻转,显然不能找到原边将其翻转。有一种想法是给原边打上标记,加入新的翻转边并在最短路结束后将其删掉。

    另一种想法是手动走翻转边。对于一条边,要么走要么不走。不走就是在没有原边的基础上跑最短路,走则是先从 (1) 走到 (y),再从 (x) 走到 (n),同时补上中间少了的 (v)

    (1)(n)(n)(1) 分开处理,求出两个最短路,判断最短路径和加上修改当前边的权值与答案的大小,更新答案。

    最后判断 (-1),输出答案即可。

    Code

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define inf 1e9
    #define N 205
    #define M 50005
    #define ll long long
    using namespace std;
    int n,m,x[M],y[M];
    ll ans,z[M],d[M];
    struct gra
    {
    	int s,tot,cant,last[M];
    	ll dis1[N],dis2[N];
    	bool bin[M],bj[N];
    	struct node
    	{
    		int to,next,head;
    		ll val;
    	}a[M];
    	void add(int x,int y,ll z)
    	{
    		a[++tot].to=y;
    		a[tot].val=z;
    		a[tot].next=a[x].head;
    		a[x].head=tot;
    	}
    	void dij()
    	{
    		memset(bj,false,sizeof(bj));
    		for (int i=1;i<=n+1;++i)
    			dis1[i]=inf;
    		dis1[s]=0;
    		for (int i=1;i<=n;++i)
    		{
    			int k=n+1;
    			for (int j=1;j<=n;++j)
    				if (!bj[j]&&dis1[j]<dis1[k]) k=j;
    			if (k==n+1) break;
    			bj[k]=true;
    			for (int j=a[k].head;j;j=a[j].next)
    			{
    				int u=a[j].to;
    				if (!bj[u]&&dis1[u]>dis1[k]+a[j].val) dis1[u]=dis1[k]+a[j].val,last[u]=j;
    			}
    		}
    		for (int i=1;i<=n;++i)
    			if (i!=s) bin[last[i]]=true;
    	}
    	void get()
    	{
    		memset(bj,false,sizeof(bj));
    		for (int i=1;i<=n+1;++i)
    			dis2[i]=inf;
    		dis2[s]=0;
    		for (int i=1;i<=n;++i)
    		{
    			int k=n+1;
    			for (int j=1;j<=n;++j)
    				if (!bj[j]&&dis2[j]<dis2[k]) k=j;
    			if (k==n+1) break;
    			bj[k]=true;
    			for (int j=a[k].head;j;j=a[j].next)
    			{
    				int u=a[j].to;
    				if (!bj[u]&&dis2[u]>dis2[k]+a[j].val&&j!=cant) dis2[u]=dis2[k]+a[j].val;
    			}
    		}
    	}
    	ll calc(int e,int ss)
    	{
    		if (!bin[e]) return dis1[ss];
    		cant=e;
    		get();
    		return dis2[ss];
    	}
    }g[10];
    int main()
    {
    	scanf("%d%d",&n,&m);
    	g[1].s=g[4].s=1;
    	g[2].s=g[3].s=n;
    	for (int i=1;i<=m;++i)
    	{
    		scanf("%d%d%lld%lld",&x[i],&y[i],&z[i],&d[i]);
    		g[1].add(x[i],y[i],z[i]);g[2].add(y[i],x[i],z[i]);
    		g[3].add(x[i],y[i],z[i]);g[4].add(y[i],x[i],z[i]);
    	}
    	for (int i=1;i<=4;++i)
    		g[i].dij();
    	ans=g[1].dis1[n]+g[3].dis1[1];
    	for (int i=1;i<=m;++i)
    	{
    		ll d1=min(g[1].calc(i,n),g[1].calc(i,y[i])+z[i]+g[2].calc(i,x[i]));
    		ll d2=min(g[3].calc(i,1),g[3].calc(i,y[i])+z[i]+g[4].calc(i,x[i]));
    		ans=min(ans,d1+d2+d[i]);
    	}
    	if (ans>=1e9) printf("-1
    ");
    	else printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    51Nod 1119 机器人走方格 V2 组合数学 费马小定理
    Codeforces Round #439 div2 869A The Artful Expedient +869B The Eternal Immortality
    51Nod 1050 循环数组最大子段和 dp
    51Nod 1009 数字1的数量 数位dp
    51Nod 1082 与7无关的数 暴力打表(埃氏筛的感觉)
    POJ 2001 Shortest Prefixes
    字典树模板
    HDU 1251 统计难题
    kmp算法模板
    HDU 2087 剪花布条
  • 原文地址:https://www.cnblogs.com/Livingston/p/15041690.html
Copyright © 2011-2022 走看看