zoukankan      html  css  js  c++  java
  • Java Synchronized的原理

    我们先通过反编译下面的代码来看看Synchronized是如何实现对代码块进行同步的:

    public class SynchronizedDemo{
        public void method(){
            synchronized(this){
                System.out.println("Method 1 start");
            }
        }
    }

    反编译

    可以看到有monitorenter和monitorexit两条指令

    关于这两条指令的描述我们参考JVM规范:

    monitorenter:

    Each object is associated with a monitor. A monitor is locked if and only if it has an owner. The thread that executes monitorenter attempts to gain ownership of the monitor associated with objectref, as follows:
    • If the entry count of the monitor associated with objectref is zero, the thread enters the monitor and sets its entry count to one. The thread is then the owner of the monitor.
    • If the thread already owns the monitor associated with objectref, it reenters the monitor, incrementing its entry count.
    • If another thread already owns the monitor associated with objectref, the thread blocks until the monitor's entry count is zero, then tries again to gain ownership.

    大概意思是说:

    每个对象都有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:

    1.如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者。

    2.如果线程已经占有该monitor,只是重新计入,则进入monitor的进入数加1.

    2.如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权。

    monitorexit:

    The thread that executes monitorexit must be the owner of the monitor associated with the instance referenced by objectref.
    The thread decrements the entry count of the monitor associated with objectref. If as a result the value of the entry count is zero, the thread exits the monitor and is no longer its owner. Other threads that are blocking to enter the monitor are allowed to attempt to do so.

     这段话的大概意思是说:

    执行monitorexit的线程必须是objectref说对应的monitor的所有者。

    执行指令时,monitor的进入数减1.如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者,奇特被这个monitor阻塞的线程可以尝试去获取这个monitor的所有权。

    通过这两段描述,我们应该能很清楚的看出Synchronized的实现原理,Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等党阀也是依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。

    方法的同步没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标识符。JVM就是根据该标识符来实现方法的同步:当方法调用时,调用指令将会检查方法的ACC_SYNCHRONIZED访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功后才能执行该方法,方法执行完后在释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。其实本质上没有区别,只是方法的同步上是一种隐私的方式来实现,无需通过字节码来完成。

    Synchronized的基本使用

    Synchronized是java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:

    (1)确保线程互斥的访问同步代码

    (2)保证共享变量的修改能够急事课件

    (3)有效解决重拍问题。

    从语法上将,Synchronized总共有三种用法:

    (1)修饰普通方法

    (2)修饰静态方法

    (3)修饰代码块

    接下来我就通过几个立在程序来说明一下这三种方式:

    1.没有同步的情况:

    public class SynchronizedTest {
        
        public void method1(){
            System.out.println("Method 1 start");
            try{
                System.out.println("Method 1 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 1 end");
        }
        
        public void method2(){
            System.out.println("Method 2 start");
            try{
                System.out.println("Method 2 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 2 end");
        }
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            final SynchronizedTest test = new SynchronizedTest();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method1();
                }
            }).start();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method2();
                }
            }).start();
        }
    
    }

    执行结果为

    Method 1 start
    Method 1 execute
    Method 2 start
    Method 2 execute
    Method 2 end
    Method 1 end
    View Code

    2.对普通方法同步

    public class SynchronizedTest {
        
        public synchronized void method1(){
            System.out.println("Method 1 start");
            try{
                System.out.println("Method 1 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 1 end");
        }
        
        public synchronized void method2(){
            System.out.println("Method 2 start");
            try{
                System.out.println("Method 2 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 2 end");
        }
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            final SynchronizedTest test = new SynchronizedTest();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method1();
                }
            }).start();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method2();
                }
            }).start();
        }
    
    }

    执行结果为:

    Method 1 start
    Method 1 execute
    Method 1 end
    Method 2 start
    Method 2 execute
    Method 2 end
    View Code

    3.静态方法(类)同步

    public class SynchronizedTest {
        
        public static synchronized void method1(){
            System.out.println("Method 1 start");
            try{
                System.out.println("Method 1 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 1 end");
        }
        
        public static synchronized void method2(){
            System.out.println("Method 2 start");
            try{
                System.out.println("Method 2 execute");
                Thread.sleep(3000);
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 2 end");
        }
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            final SynchronizedTest test = new SynchronizedTest();
            final SynchronizedTest test2 = new SynchronizedTest();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method1();
                }
            }).start();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test2.method2();
                }
            }).start();
        }
    
    }

    执行结果如下,对静态方法的同步本质上是对类的同步(静态方法本质上是属于类的方法,而不是对象上的方法),所以即使test和test2属于不同的对象,但是它们都属于SynchronizedTest类的实例,所以也只能顺序的执行method1和method2,不能并发执行。

    Method 1 start
    Method 1 execute
    Method 1 end
    Method 2 start
    Method 2 execute
    Method 2 end
    View Code

    4、代码块同步

    public class SynchronizedTest {
        
        public void method1(){
            System.out.println("Method 1 start");
            try{
                synchronized (this) {
                    System.out.println("Method 1 execute");
                    Thread.sleep(3000);
                }
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 1 end");
        }
        
        public void method2(){
            System.out.println("Method 2 start");
            try{
                synchronized (this) {
                    System.out.println("Method 2 execute");
                    Thread.sleep(3000);
                }
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println("Method 2 end");
        }
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            final SynchronizedTest test = new SynchronizedTest();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method1();
                }
            }).start();
            
            new Thread(new Runnable(){
                @Override
                public void run(){
                    test.method2();
                }
            }).start();
        }
    
    }

    执行结果如下,虽然线程1和线程2都进入了对应的方法开始执行,但是线程2在进入同步块之前,需要等待线程1中同步块执行完成。

    Method 1 start
    Method 1 execute
    Method 2 start
    Method 1 end
    Method 2 execute
    Method 2 end
    View Code
  • 相关阅读:
    python学习笔记 day37 Manager (IPC机制----进程之间互相通信)
    python学习笔记 day37 管道Pipe (IPC机制----进程之间互相通信)
    python学习笔记 day37 生产者消费者模型
    python学习笔记 day36 队列(IPC机制----进程之间互相通信)
    HDU 3068 最长回文
    CodeForces Round #555 Div.3
    2016湖南省赛 [Cloned]
    HDU 3486 Interviewe
    CodeForces Round #554 Div.2
    POJ 1050 To the Max
  • 原文地址:https://www.cnblogs.com/LoganChen/p/6748569.html
Copyright © 2011-2022 走看看