二分查找
说明:也称折半查找,元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
复杂度分析:最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);
注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。——《大话数据结构》
C++实现源码(普通版本):
1 //二分查找 2 #include <iostream> 3 #include <stdlib.h> 4 #include <ctime> 5 6 using namespace std; 7 8 #define MAX 100 9 10 void input(int *arr) 11 { 12 srand((unsigned)time(NULL)); 13 for(int i = 0; i < MAX; i++) 14 { 15 arr[i] = rand()%100; 16 } 17 } 18 19 void output(int *arr) 20 { 21 for(int i = 0; i < MAX; i++) 22 { 23 cout << arr[i] << " "; 24 if(0 == i % 10) 25 cout << endl; 26 } 27 cout << endl; 28 } 29 30 void quickSort(int *arr, int l, int h) 31 { 32 if(l < h) 33 { 34 int low, high, tmp; 35 low = l; 36 high = h; 37 38 tmp = arr[l];//选择基准值 39 40 while(low < high) 41 { 42 while(low < high && arr[high] > tmp) 43 high--; 44 if(low < high) 45 arr[low++] = arr[high]; 46 while(low < high && arr[low] < tmp) 47 low++; 48 if(low < high) 49 arr[high--] = arr[low]; 50 } 51 arr[low] = tmp; 52 quickSort(arr, l, low-1); 53 quickSort(arr, low+1, h); 54 } 55 } 56 57 int binarySearch(int *arr, int value, int n) 58 { 59 int low, high, mid; 60 61 low = 0; 62 high = n-1; 63 64 while(low <= high) 65 { 66 mid = (low + high)/2; 67 if(arr[mid] == value) 68 return mid; 69 if(arr[mid] > value) 70 high = mid-1; 71 if(arr[mid] < value) 72 low = mid+1; 73 } 74 return -1; 75 } 76 77 int main() 78 { 79 int x, pos, num[MAX]; 80 input(num); 81 82 cout << "sort before:" << endl; 83 output(num); 84 quickSort(num, 0, MAX-1); 85 cout << "sort after:" << endl; 86 output(num); 87 88 cout << "Enter find num : "; 89 cin >> x; 90 pos = binarySearch(num, x, MAX-1); 91 if(pos) 92 cout << "OK!" << x << "is found in pos : " << pos << endl; 93 else 94 cout << "Sorry!" << x << "is not found in num" << endl; 95 96 return 0; 97 }
C++实现源码(递归版本):
//二分查找--递归实现 int binarySearch(int *arr, int value, int low, int high) { int mid = low + (high - low)/2; if(arr[mid] == value) return mid; if(arr[mid] > value) return binarySearch(arr, value, low, mid-1); if(arr[mid] < value) return binarySearch(arr, value, mid+1, high); }