zoukankan      html  css  js  c++  java
  • 2018.11.6刷题记录

    数论基本糙作:

      gcd,快速幂,逆元,欧拉函数,分解因数balabala一通乱搞。

    POJ1845 Sumdiv (数论:算数基本定理+数论基本操作)

    题目:

    Sumdiv
    Time Limit: 1000MS        Memory Limit: 30000K
    Total Submissions: 29012        Accepted: 7127
    
    Description
    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
    
    Input
    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
    
    Output
    The only line of the output will contain S modulo 9901.
    
    Sample Input
    
    2 3
    
    Sample Output
    
    15
    
    Hint
    2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output). 
    View Code

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    typedef long long ll;
    const int MAX_N = 10000;
    const int MOD = 9901;
    
    ll fpow(ll a, ll p) {
        ll ans = 1;
        while (p) {
            if (p&1) ans = (ans*a) % MOD;
            a = (a*a) % MOD;
            p >>= 1;
        }
        return ans;
    }
    
    int prime[MAX_N+1];
    void getPrime()
    {
        memset(prime, 0, sizeof prime);
        for (int i = 2; i <= MAX_N; i++) {
            if (!prime[i]) prime[++prime[0]] = i;
            for (int j = 1; j <= prime[0] && prime[j] <= MAX_N/i; j++) {
                prime[prime[j]*i] = 1;
                if (i%prime[j] == 0) break;
            }
        }
    }
    
    ll m;
    ll p[100], c[100];
    ll getFactors(ll x)
    {
        m = 0;
        for (int i = 1; prime[i] <= x/prime[i]; i++) {
            if (x%prime[i] == 0) {
                p[m] = prime[i];
                c[m] = 0;
                while (x%prime[i] == 0) {
                    c[m]++;
                    x /= prime[i];
                }
                m++;
            }
        }
        if (x > 1) {
            p[m] = x;
            c[m] = 1;
            m++;
        }
        return m;
    }
    
    int main()
    {
        getPrime();
        ll A, B;
        cin >> A >> B;
        getFactors(A);
        ll ans = 1;
        for (int i = 0; i < m; i++) {
            if (p[i] % MOD == 1) {
                ans = (B*c[i]+1)%MOD * ans % MOD;
                continue;
            }
            ll a = (fpow(p[i], B*c[i]+1)-1+MOD) % MOD;
            ll b = fpow(p[i]-1, MOD-2);
            ans = ans * a % MOD * b % MOD;
        }
        cout << ans << endl;
        return 0;
    }
    View Code

    POJ3696 The Luckiest Number (数论:欧拉定理+数论基本操作)

    题目:

    The Luckiest number
    Time Limit: 1000MS        Memory Limit: 65536K
    Total Submissions: 6829        Accepted: 1820
    
    Description
    
    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
    
    Input
    
    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).
    
    The last test case is followed by a line containing a zero.
    
    Output
    
    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
    
    Sample Input
    
    8
    11
    16
    0
    
    Sample Output
    
    Case 1: 1
    Case 2: 2
    Case 3: 0
    View Code

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    typedef long long ll;
    const int MAX_N = 10000;
    const int MOD = 9901;
    
    ll fpow(ll a, ll p) {
        ll ans = 1;
        while (p) {
            if (p&1) ans = (ans*a) % MOD;
            a = (a*a) % MOD;
            p >>= 1;
        }
        return ans;
    }
    
    int prime[MAX_N+1];
    void getPrime()
    {
        memset(prime, 0, sizeof prime);
        for (int i = 2; i <= MAX_N; i++) {
            if (!prime[i]) prime[++prime[0]] = i;
            for (int j = 1; j <= prime[0] && prime[j] <= MAX_N/i; j++) {
                prime[prime[j]*i] = 1;
                if (i%prime[j] == 0) break;
            }
        }
    }
    
    ll m;
    ll p[100], c[100];
    ll getFactors(ll x)
    {
        m = 0;
        for (int i = 1; prime[i] <= x/prime[i]; i++) {
            if (x%prime[i] == 0) {
                p[m] = prime[i];
                c[m] = 0;
                while (x%prime[i] == 0) {
                    c[m]++;
                    x /= prime[i];
                }
                m++;
            }
        }
        if (x > 1) {
            p[m] = x;
            c[m] = 1;
            m++;
        }
        return m;
    }
    
    int main()
    {
        getPrime();
        ll A, B;
        cin >> A >> B;
        getFactors(A);
        ll ans = 1;
        for (int i = 0; i < m; i++) {
            if (p[i] % MOD == 1) {
                ans = (B*c[i]+1)%MOD * ans % MOD;
                continue;
            }
            ll a = (fpow(p[i], B*c[i]+1)-1+MOD) % MOD;
            ll b = fpow(p[i]-1, MOD-2);
            ans = ans * a % MOD * b % MOD;
        }
        cout << ans << endl;
        return 0;
    }
    View Code
  • 相关阅读:
    10.22 比赛总结 修剪草坪(mowlawn)、玉米迷宫(cornmaze)
    QProcess怎么实时的读到output的信息
    Qt Visual Studio Add-in 导出的 .pri 怎么用?
    Qt写Activex插件 总结
    osg中内嵌QtBrowser
    解决使用osgModeling的Loft生成管子时的bug(续)
    lua中的中文乱码
    std::string的split函数
    解决使用osgModeling的Loft生成管子时的bug
    Qt里的slot
  • 原文地址:https://www.cnblogs.com/Lubixiaosi-Zhaocao/p/9922504.html
Copyright © 2011-2022 走看看