深度遍历:
递归版:递归方法一定要记得加结束条件。三种遍历只是输出语句位置不同。
前序:
void PreOrderTraversal(Tree* tmp) { if(tmp == NULL) return; printf("%d ",tmp->val); PreOrderTraversal(tmp->pleft); PreOrderTraversal(tmp->pright); }
中序:
void InOrderTraversal(Tree* tmp) { if(tmp == NULL) return; InOrderTraversal(tmp->pleft); printf("%d ",tmp->val); InOrderTraversal(tmp->pright); }
后序:
void LastOrderTraversal(Tree* tmp) { if(tmp == NULL) return; LastOrderTraversal(tmp->pleft); LastOrderTraversal(tmp->pright); printf("%d ",tmp->val); }
非递归版:辅助栈完成,后序遍历和前序,中序有所差别,因为后序树最后输出根,找到右孩子,还要保留根,不弹出。
前序:
void UnRecPreTraversal(Tree* tree) { if(tree == NULL) return; //申请辅助栈 Stack* mystack = s_Init(); while(1) { while(tree) { //打印 printf("%d ",tree->val); //入栈 s_Push(mystack,tree); //向左走 tree = tree->pleft; } //弹出 tree= s_Pop(mystack); //栈空结束 if(tree == NULL ) break; tree = tree->pright; } s_Destroy(&mystack); }
中序:与前序遍历只改变了输出语句的位置
void UnRecInTraversal(Tree* tree) { if(tree == NULL) return; Stack* mystack = s_Init(); while(1) { while(tree) { s_Push(mystack,tree); tree = tree->pleft; } tree= s_Pop(mystack); if(tree == NULL) break; printf("%d ",tree->val); tree = tree->pright; } s_Destroy(&mystack); }
后序:先输出根的右孩子,再输出根,所以不能先将根弹出,当右孩子处理完毕或者右孩子为空时,再弹出打印。作为父亲节点,打印的前一个节点一定是它的右孩子
void UnRecLastTraversal(Tree* tree) { if(tree == NULL) return; //辅助栈 Stack* mystack = s_Init(); Tree* bj = NULL; while(1) { while(tree) { //入栈向左走 s_Push(mystack,tree); tree = tree->pleft; } if(mystack->pHead == NULL) break; //当栈顶元素没有右孩子,或者右孩子被标记(处理过),弹出此根节点 if(mystack->pHead->val->pright == NULL || mystack->pHead->val->pright == bj) { //弹出 打印 标记 bj = s_Pop(mystack); printf("%d ",bj->val); } else //处理右孩子 { tree = mystack->pHead->val->pright; } } s_Destroy(&mystack); }
层序遍历:辅助队列,将节点先压入队列,每次取出先输出,然后查看是否有左右节点再压入队列
void LevelTraversal(BinaryTree *pTree) { if(pTree == NULL)return; //申请辅助队列 Queue *pQueue = Init();//根入队 q_Push(pQueue,pTree); while(!q_IsEmpty(pQueue)) { //弹出 pTree = q_Pop(pQueue); //打印 printf("%d ",pTree->nValue); //非空左右入队 if(pTree->pLeft) q_Push(pQueue,pTree->pLeft); if(pTree->pRight) q_Push(pQueue,pTree->pRight); } }