zoukankan      html  css  js  c++  java
  • 区间覆盖

    Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose the minimal
    amount of them, such they would completely cover the segment [0, M].


    Input
    The first line is the number of test cases, followed by a blank line.
    Each test case in the input should contains an integer M (1 ≤ M ≤ 5000), followed by pairs “Li Ri”
    (|Li|, |Ri| ≤ 50000, i ≤ 100000), each on a separate line. Each test case of input is terminated by pair‘0 0’.
    Each test case will be separated by a single line.


    Output
    For each test case, in the first line of output your programm should print the minimal number of line
    segments which can cover segment [0, M]. In the following lines, the coordinates of segments, sorted
    by their left end (Li), should be printed in the same format as in the input. Pair ‘0 0’ should not be
    printed. If [0, M] can not be covered by given line segments, your programm should print ‘0’ (without
    quotes).
    Print a blank line between the outputs for two consecutive test cases.


    Sample Input
    2
    1
    -1 0
    -5 -3
    2 5
    0 0
    1
    -1 0
    0 1
    0 0
    Sample Output
    0
    1
    0 1

    思路:

        把所有区间从小到大排序,每次进行比较,找区间右边尽量大的,直到覆盖整个区间

    源代码:

        

     1 #include<iostream>
     2 #include<cstring>
     3 #include<string>
     4 #include<algorithm>
     5 using namespace std;
     6 #define maxn 100000+5
     7 int M;
     8 struct Seg{
     9     int left;
    10     int right;
    11     friend bool operator<(const Seg&a, const Seg&b)
    12     {
    13         if (a.left != b.left)
    14             return a.left<b.left;
    15         return a.right> b.left;          //现在还不懂为什么要这样/(ㄒoㄒ)/~~
    16     
    17     }
    18 }q[maxn];
    19 int ai[maxn];
    20 int main()
    21 {
    22     int T;
    23     cin >> T;
    24     while (T--)
    25     {
    26         int flag = 0;
    27         cin >> M;
    28         int Index = 0;
    29             while (cin >> q[Index].left >> q[Index].right)
    30             {
    31                 
    32                 if (q[Index].left==0&&q[Index].right==0)
    33                             break;    
    34                 if (q[Index].right > 0) ++Index;   //把区间右边大于0的才存进去
    35             }
    36         
    37         sort(q, q + Index);
    38         if (q[0].left > 0)                  //第一个的左边都大于0,表示没有区间可以覆盖目标区间
    39         {
    40             cout << "0
    ";
    41             if (T)                        //不是最后一组数据要求输出空行
    42                 cout << endl;
    43                 continue;
    44             
    45         }
    46         int cur = 0;
    47         int j = -1;
    48         for (int i = 0; i < Index; i++)
    49         {
    50             if (q[i].left <= cur)     //区间左边小于0的满足初步条件
    51             {
    52                 if (j == -1)
    53                     ai[++j] = i;         
    54                 else if (q[i].right > q[ai[j]].right)      //找区间右边大的
    55                     ai[j] = i;
    56             }
    57                 else
    58                 {
    59                     cur = q[ai[j]].right;      //找区间右边尽量大的
    60                     ai[++j] = i;
    61                 }
    62 
    63                 if (q[ai[j]].right >= M)     //覆盖了整个区间
    64                 {
    65                     flag = 1;
    66                     break;
    67                 }
    68             
    69         }
    70         if (flag)
    71         {
    72             cout << j + 1 << endl;
    73             for (int i = 0; i <=j; i++)
    74                 
    75                 cout << q[ai[i]].left << " " << q[ai[i]].right << endl;
    76             
    77         }
    78             else
    79             
    80                 cout << "0
    ";
    81                 if (T)
    82                     cout << endl;
    83             
    84     }
    85 
    86     return 0;
    87 }
  • 相关阅读:
    分治法(待整理)
    NP完全问题
    合并排序
    插入排序
    算法基础知识(算法导论)
    分支定界法
    RUCM简介
    大一编程基础培训]==06课==Python的字符串和编码
    python加密包利用pycrypto包进行AES、DES、MD5等加密
    pyecharts模块
  • 原文地址:https://www.cnblogs.com/Lynn0814/p/4716081.html
Copyright © 2011-2022 走看看