Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4
Case 2: 7 1 6
思路:
用二分法(避免超时)找最小的数放在子序列里面,比如最开始的序列是 2 3 4,但是后面又发现了一个1,就把1代替之前的2,以免后面出现更长的子序列
1 #include<iostream> 2 #include<cstdio> 3 using namespace std; 4 #define maxn 100000+10 5 int al[maxn], cl[maxn]; 6 int main() 7 { 8 int n,len,left,right,mid; 9 while (scanf("%d",&n)!= EOF){ 10 for (int i = 0; i < n; i++) 11 scanf("%d", &al[i]); 12 len = 0, cl[0] = -1; 13 for (int i = 0; i < n; i++) 14 { 15 if (al[i]>cl[len]) 16 cl[++len] = al[i]; //把大的数放进去 17 else 18 { 19 left = 1, right = len; //二分法找后面小的数放在这个子序列的前面,以免有更长的子序列 20 21 while (left <= right) 22 { 23 mid = (left + right) / 2; 24 if (al[i]>cl[mid]) 25 left = mid + 1; 26 else 27 right = mid - 1; 28 } 29 cl[left] = al[i]; 30 } 31 } 32 printf("%d ", len); 33 } 34 35 return 0; 36 }