zoukankan      html  css  js  c++  java
  • 三种素数筛法汇总

      本地测试结果是,第三种方法速度最快,而且可以直接判断给定的数是否素数。

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <algorithm>
     4 #include <cstring>
     5 #include <cmath>
     6 
     7 using namespace std;
     8 
     9 const int N = 111111111;
    10 int prm[6666666], pn, np[N >> 6];
    11 bool mp[N];
    12 
    13 void getPrm1() {
    14     pn = 0;
    15     prm[pn++] = 2;
    16     for (int i = 3; i < N; i++, i++) {
    17         if (!(np[i >> 6] & (1 << (i >> 1 & 31)))) {
    18             prm[pn++] = i;
    19             for (int j = (i << 1) + i; j < N; j += (i << 1)) {
    20                 np[j >> 6] |= (1 << (j >> 1 & 31));
    21             }
    22         }
    23     }
    24 //    for (int i = 0; i < 20; i++) {
    25 //        cout << i << " : " << prm[i] << endl;
    26 //    }
    27     cout << pn << endl;
    28 }
    29 
    30 void getPrm2() {
    31     pn = 0;
    32     int tmp;
    33     mp[0] = mp[1] = true;
    34     prm[pn++] = 2;
    35     for (int i = 3; i < N; i++, i++) {
    36         if (!mp[i]) prm[pn++] = i;
    37         for (int j = 0; j < pn; j++) {
    38             tmp = i * prm[j];
    39             if (tmp >= N) break;
    40             mp[tmp] = true;
    41             if (i % prm[j] == 0) break;
    42         }
    43     }
    44 //    for (int i = 0; i < 20; i++) {
    45 //        cout << i << " : " << prm[i] << endl;
    46 //    }
    47     cout << pn << endl;
    48 }
    49 
    50 const int N2 = N >> 1;
    51 const int Nsqrt = (int) sqrt((double) N) >> 1;
    52 char ax[(N >> 4) + 2];
    53 
    54 void sieve() {
    55     memset(ax, 255, sizeof(ax));
    56     ax[0] = 0xfe;
    57     for (int i = 1; i < Nsqrt; i++) {
    58         if (ax[i >> 3] & (1 << (i & 7))) {
    59             for (int j = (i << 1) + i + 1; j < N2; j += i << 1 | 1) {
    60                 ax[j >> 3] &= ~(1 << (j & 7));
    61             }
    62         }
    63     }
    64 }
    65 
    66 inline bool isprime(int n) { return (n == 2) || ((n & 1) && (1 << (n >> 1 & 7) & ax[n >> 4]));}
    67 
    68 void getPrm3() {
    69     pn = 0;
    70     sieve();
    71     prm[pn++] = 2;
    72     for (int i = 3; i < N; i++, i++) {
    73         if (isprime(i)) prm[pn++] = i;
    74     }
    75 //    for (int i = 0; i < 20; i++) {
    76 //        cout << i << " : " << prm[i] << endl;
    77 //    }
    78     cout << pn << endl;
    79 }
    80 
    81 int main() {
    82     getPrm3();
    83     return 0;
    84 }
    View Code

    ——written by Lyon

  • 相关阅读:
    openpyxl(python操作Excel)
    python爬虫之数据加密解密
    python爬虫之字体反爬
    识别缩略图加载
    Windows文件共享自动失效解决办法
    pygame
    获取文件路径、文件名、后缀名
    Oracle EBS INV 挑库发放物料搬运单
    Oracle EBS INV 删除保留
    Oracle EBS INV 创建货位
  • 原文地址:https://www.cnblogs.com/LyonLys/p/prime_number_Lyon.html
Copyright © 2011-2022 走看看