zoukankan      html  css  js  c++  java
  • HDU2227 Find the nondecreasing subsequences 树状数组+DP

    该题题义是求一个序列中非递减的子序列的个数,其实就是一个求逆序对的题,这里当然就是用树状数组来解决了。

    首先对输入数据进行离散化,以便于在树状数组上面工作,然后利用DP公式计算ans[i] = sum{ ans[j], j < i },可以理解为在前面的所有满足要求的集合上加上这个较大的数。
    参看http://www.cppblog.com/menjitianya/archive/2011/04/06/143510.aspx

    代码如下:

    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cstdlib>
    #include <map>
    #define MAXN 100005
    #define MOD 1000000007
    typedef long long ll;
    using namespace std;
    
    ll c[MAXN];
    int N, val[MAXN], t[MAXN];
    
    inline int lowbit( int x )
    {
    	return x & (-x);
    }
    
    inline void modify( int pos, ll val )
    {
    	for (int i = pos; i <= N; i += lowbit(i) )
    	{
    		c[i] += val;
    		if (c[i] >= MOD)	c[i] %= MOD;
    	}
    }
    
    inline ll sum( int pos )
    {
    	int s = 0;
    	for (int i = pos; i > 0; i -= lowbit(i))
    	{
    		s += c[i];
    		if (s >= MOD)	s %= MOD;
    	}
    	return s;
    }
    
    int main(  )
    {
    	while (scanf("%d", &N) == 1)
    	{
    		ll ans = 0;
    		map<int,int>mp;
    		memset(c, 0, sizeof(c));
    		for (int i = 1; i <= N; ++i)
    		{
    			scanf("%d", &val[i]);
    			t[i] = val[i];
    		}
    		sort(t + 1, t + N + 1);
    		int cnt = unique(t + 1, t + N + 1) - t - 1;
    		for (int i = 1; i <= cnt; ++i)
    		{
    			mp[t[i]] = i;
    		}
    		modify(1, 1);
    		for (int i = 1; i <= N; ++i)
    		{
    			int x = sum(mp[val[i]]);
    			ans += x;
    			if (ans >= MOD)	ans %= MOD;
    			modify(mp[val[i]], x);
    		}
    		printf("%lld\n", ans);
    	}
    	return 0;
    }
    

    以下是我的错误代码,套用了公式 2^N-1 (其中N为逆序对数,求解时-1就用自身的单点集合来中和了,所以直接就用2^N来计算了) 来计算。可是对于下面的情况无法给出正确的结果。

    3

    2 1 2

    其结果会与

    3

    2 1 3

    相同,多算了( 2, 1, 2 ) 这类集合......

    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cstdlib>
    #include <map>
    #define MAXN 100005
    #define MOD 1000000007
    typedef long long ll;
    using namespace std;
    
    ll c[MAXN];
    int rec[MAXN];
    int N, val[MAXN], t[MAXN];
    
    inline int lowbit( int x )
    {
    	return x & (-x);
    }
    
    inline void modify( int pos, ll val )
    {
    	for (int i = pos; i <= N; i += lowbit(i) )
    	{
    		c[i] += val; 
    	}
    }
    
    inline ll sum( int pos )
    {
    	int s = 0;
    	for (int i = pos; i > 0; i -= lowbit(i))
    	{
    		s += c[i]; 
    	}
    	return s;
    }
    
    int main(  )
    {
        rec[0] = 1;
        for (int i = 1; i < MAXN; ++i)
        {
            rec[i] = (rec[i-1]*2)%MOD;
        }
    	while (scanf("%d", &N) == 1)
    	{
    		ll ans = 0;
    		map<int,int>mp;
    		memset(c, 0, sizeof(c));
    		for (int i = 1; i <= N; ++i)
    		{
    			scanf("%d", &val[i]);
    			t[i] = val[i];
    		}
    		sort(t + 1, t + N + 1);
    		int cnt = unique(t + 1, t + N + 1) - t - 1;
    		for (int i = 1; i <= cnt; ++i)
    		{
    			mp[t[i]] = i;
    		}
    		for (int i = 1; i <= N; ++i)
    		{
    			int x = sum(mp[val[i]]); 
    		    ans += rec[x];
    			if (ans >= MOD)	ans %= MOD;
    			modify(mp[val[i]], 1);
    		}
    		printf("%lld\n", ans);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    Search smarter with Apache Solr, Part 1: Essential features and the Solr schema
    不错的 solr 使用安装介绍
    Twitter.com 相对于 sina.com 门户网站的优势
    Tag的妙处
    solrj的使用 转
    Search smarter with Apache Solr, Part 2: Solr for the enterprise
    Solrj的使用
    solr实例代码 import org.apache.solr.client.solrj.SolrServer
    一篇 认为未来房价会跌的文章
    Solr Multicore 试用小记 (转)
  • 原文地址:https://www.cnblogs.com/Lyush/p/2357960.html
Copyright © 2011-2022 走看看