题意:给定一个网格图,图中有一些点要求全部走到,问最少的花费是多少,从任意边界进入,任意边界出去,如果不能够全部走到,输出0。
解法:一次spfa从边界上的所有点出发,计算到K个宝藏的最短路,然后计算出任意两个宝藏之间的最短路,最后状态压缩枚举即可。
代码如下:
#include <cstdlib> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; // 记得要带走全部的物品 const int INF = 0x3f3f3f3f; int N, M, K; int mp[205][205]; int idis[15][15]; // 这个15*15的矩阵用来保留宝藏之间的最短路程 int odis[15]; // 从边界到K个位置的最短距离 struct Node { int x, y; }p[15]; int que[1000005]; int dis[40005]; char vis[40005]; int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0}; bool legal(int x, int y) { if (x < 0 || x >= N || y < 0 || y >= M) return false; return true; } void spfa(int sta, int num) { int front = 0, tail = 0; memset(dis, 0x3f, sizeof (dis)); memset(vis, 0, sizeof (vis)); que[tail++] = sta; dis[sta] = 0, vis[sta] = 1; while (front < tail) { int cur = que[front++], nxt; vis[cur] = 0; int x = cur / M, y = cur % M; int xx, yy; for (int k = 0; k < 4; ++k) { xx = x + dir[k][0], yy = y + dir[k][1]; nxt = xx * M + yy; if (legal(xx, yy)) { if (dis[nxt] > dis[cur] + mp[xx][yy]) { dis[nxt] = dis[cur] + mp[xx][yy]; if (!vis[nxt]) { vis[nxt] = 1; que[tail++] = nxt; } } } } } for (int i = 0; i < K; ++i) { idis[num][i] = dis[p[i].x * M + p[i].y]; } } void bspfa() { int front = 0, tail = 0; memset(dis, 0x3f, sizeof (dis)); memset(vis, 0, sizeof (vis)); for (int i = 0; i < N; ++i) { int k1 = i * M, k2 = i * M + M-1; que[tail++] = k1, que[tail++] = k2; dis[k1] = mp[i][0], dis[k2] = mp[i][M-1]; // 边界点均被初始距离为0加入进来 vis[k1] = vis[k2] = 1; } for (int j = 1; j < M - 1; ++j) { int k1 = j, k2 = (N-1) * M + j; que[tail++] = k1, que[tail++] = k2; dis[k1] = mp[0][j], dis[k2] = mp[N-1][j]; vis[k1] = vis[k2] = 1; } while (front < tail) { int cur = que[front++], nxt; vis[cur] = 0; int x = cur / M, y = cur % M; int xx, yy; for (int k = 0; k < 4; ++k) { xx = x + dir[k][0], yy = y + dir[k][1]; nxt = xx * M + yy; if (legal(xx, yy)) { if (dis[nxt] > dis[cur] + mp[xx][yy]) { dis[nxt] = dis[cur] + mp[xx][yy]; if (!vis[nxt]) { vis[nxt] = 1; que[tail++] = nxt; } } } } } for (int i = 0; i < K; ++i) { odis[i] = dis[p[i].x*M + p[i].y]; } } int f[13][1<<13]; // f[i][j]表示状态为j,并且最后走的位置为i的最少开销 int dfs(int sta, int nxt) { if (~f[nxt][sta] && nxt != -1) { return f[nxt][sta]; } if (sta == 0) { return f[nxt][sta] = odis[nxt]; // 从nxt开始进入 } int ret = INF; for (int i = 0; i < K; ++i) { if (sta&(1 << i)) { if (nxt != -1) ret = min(ret, dfs(sta^(1 << i), i) + idis[i][nxt]); else ret = min(ret, dfs(sta^(1 << i), i) + odis[i] - mp[p[i].x][p[i].y]); // 走i点走出去的 } } return f[nxt][sta] = ret; } int solve() { memset(f, 0x3f, sizeof (f)); int mask = 1 << K; for (int i = 0; i < K; ++i) f[i][1<<i] = odis[i]; for (int i = 2; i < mask; ++i) { if (!(i - (i&(-i)))) continue; // 如果只有一位为1 for (int j = 0; j < K; ++j) { if (!(i&(1<<j))) continue; for (int k = 0; k < K; ++k) { f[j][i] = min(f[j][i], f[k][i^(1<<j)] + idis[k][j]); } } } int ret = INF; for (int i = 0; i < K; ++i) { ret = min(ret, f[i][mask-1] + odis[i] - mp[p[i].x][p[i].y]); } return ret; } int main() { int T; // freopen("1.in", "r", stdin); scanf("%d", &T); while (T--) { scanf("%d %d", &N, &M); memset(idis, 0x3f, sizeof (idis)); memset(odis, 0x3f, sizeof (odis)); for (int i = 0; i < N; ++i) { for (int j = 0; j < M; ++j) { scanf("%d", &mp[i][j]); if (mp[i][j] == -1) mp[i][j] = INF; } } scanf("%d", &K); for (int i = 0; i < K; ++i) { scanf("%d %d", &p[i].x, &p[i].y); } for (int i = 0; i < K; ++i) { spfa(p[i].x * M + p[i].y, i); } bspfa(); memset(f, 0xff, sizeof (f)); int ret = dfs((1<<K)-1, -1); // int ret = solve(); // 也可 if (ret == INF) puts("0"); else printf("%d\n", ret); } return 0; }