zoukankan      html  css  js  c++  java
  • HDU4568 Hunter 状态压缩

    题意:给定一个网格图,图中有一些点要求全部走到,问最少的花费是多少,从任意边界进入,任意边界出去,如果不能够全部走到,输出0。

    解法:一次spfa从边界上的所有点出发,计算到K个宝藏的最短路,然后计算出任意两个宝藏之间的最短路,最后状态压缩枚举即可。

    代码如下:

    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    // 记得要带走全部的物品 
    
    const int INF = 0x3f3f3f3f;
    int N, M, K;
    int mp[205][205];
    int idis[15][15]; // 这个15*15的矩阵用来保留宝藏之间的最短路程
    int odis[15];      // 从边界到K个位置的最短距离
    
    struct Node {
        int x, y;
    }p[15];
    
    int que[1000005];
    int dis[40005];
    char vis[40005];
    int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
    
    bool legal(int x, int y) {
        if (x < 0 || x >= N || y < 0 || y >= M) return false;
        return true;
    }
    
    void spfa(int sta, int num) {
        int front = 0, tail = 0;
        memset(dis, 0x3f, sizeof (dis));
        memset(vis, 0, sizeof (vis));
        que[tail++] = sta;
        dis[sta] = 0, vis[sta] = 1;
        while (front < tail) {
            int cur = que[front++], nxt;
            vis[cur] = 0;
            int x = cur / M, y = cur % M;
            int xx, yy;
            for (int k = 0; k < 4; ++k) {
                xx = x + dir[k][0], yy = y + dir[k][1];
                nxt = xx * M + yy;
                if (legal(xx, yy)) {
                    if (dis[nxt] > dis[cur] + mp[xx][yy]) {
                        dis[nxt] = dis[cur] + mp[xx][yy];
                        if (!vis[nxt]) {
                            vis[nxt] = 1;
                            que[tail++] = nxt;
                        }
                    }
                }
            }
        }
        for (int i = 0; i < K; ++i) {
            idis[num][i] = dis[p[i].x * M + p[i].y];
        }
    }
    
    void bspfa() {
        int front = 0, tail = 0;
        memset(dis, 0x3f, sizeof (dis));
        memset(vis, 0, sizeof (vis));
        for (int i = 0; i < N; ++i) {
            int k1 = i * M, k2 = i * M + M-1;
            que[tail++] = k1, que[tail++] = k2;
            dis[k1] = mp[i][0], dis[k2] = mp[i][M-1]; // 边界点均被初始距离为0加入进来 
            vis[k1] = vis[k2] = 1;
        }
        for (int j = 1; j < M - 1; ++j) {
            int k1 = j, k2 = (N-1) * M + j;
            que[tail++] = k1, que[tail++] = k2;
            dis[k1] = mp[0][j], dis[k2] = mp[N-1][j];
            vis[k1] = vis[k2] = 1;
        }
        while (front < tail) {
            int cur = que[front++], nxt;
            vis[cur] = 0;
            int x = cur / M, y = cur % M;
            int xx, yy;
            for (int k = 0; k < 4; ++k) {
                xx = x + dir[k][0], yy = y + dir[k][1];
                nxt = xx * M + yy;
                if (legal(xx, yy)) {
                    if (dis[nxt] > dis[cur] + mp[xx][yy]) {
                        dis[nxt] = dis[cur] + mp[xx][yy];
                        if (!vis[nxt]) {
                            vis[nxt] = 1;
                            que[tail++] = nxt;
                        }
                    }
                }
            }
        }
        for (int i = 0; i < K; ++i) {
            odis[i] = dis[p[i].x*M + p[i].y];
        }
    }
    
    int f[13][1<<13];
    // f[i][j]表示状态为j,并且最后走的位置为i的最少开销 
    
    int dfs(int sta, int nxt) {
        if (~f[nxt][sta] && nxt != -1) {
            return f[nxt][sta];
        }
        if (sta == 0) {
            return f[nxt][sta] = odis[nxt]; // 从nxt开始进入
        }
        int ret = INF;
        for (int i = 0; i < K; ++i) {
            if (sta&(1 << i)) {
                if (nxt != -1)
                    ret = min(ret, dfs(sta^(1 << i), i) + idis[i][nxt]);
                else
                    ret = min(ret, dfs(sta^(1 << i), i) + odis[i] - mp[p[i].x][p[i].y]);
                    // 走i点走出去的 
            }
        }
        return f[nxt][sta] = ret;
    }
     
    int solve() {
        memset(f, 0x3f, sizeof (f));
        int mask = 1 << K;
        for (int i = 0; i < K; ++i) f[i][1<<i] = odis[i];
        for (int i = 2; i < mask; ++i) {
            if (!(i - (i&(-i)))) continue; // 如果只有一位为1
            for (int j = 0; j < K; ++j) {
                if (!(i&(1<<j))) continue;
                for (int k = 0; k < K; ++k) {
                    f[j][i] = min(f[j][i], f[k][i^(1<<j)] + idis[k][j]);
                }
            }
        }
        int ret = INF;
        for (int i = 0; i < K; ++i) {
            ret = min(ret, f[i][mask-1] + odis[i] - mp[p[i].x][p[i].y]);
        }
        return ret;
    }
    
    int main() {
        int T;
    //    freopen("1.in", "r", stdin);
        scanf("%d", &T);
        while (T--) {
            scanf("%d %d", &N, &M);
            memset(idis, 0x3f, sizeof (idis));
            memset(odis, 0x3f, sizeof (odis));
            for (int i = 0; i < N; ++i) {
                for (int j = 0; j < M; ++j) {
                    scanf("%d", &mp[i][j]);
                    if (mp[i][j] == -1) mp[i][j] = INF;
                }
            }
            scanf("%d", &K);
            for (int i = 0; i < K; ++i) {
                scanf("%d %d", &p[i].x, &p[i].y);
            }
            for (int i = 0; i < K; ++i) {
                spfa(p[i].x * M + p[i].y, i);
            }
            bspfa();
            memset(f, 0xff, sizeof (f));
            int ret = dfs((1<<K)-1, -1);
        //    int ret = solve();   // 也可 
            if (ret == INF) puts("0");
            else printf("%d\n", ret); 
        }
        return 0;
    }
  • 相关阅读:
    Python KNN算法
    Python TF-IDF计算100份文档关键词权重
    Python 结巴分词
    Python 将pdf转换成txt(不处理图片)
    Python小爬虫-自动下载三亿文库文档
    Kubuntu麦克风音频无声音
    adb常用命令
    Ubuntu下adb的安装
    Wamp安装使用+Git for Windows
    TensorFlow使用记录 (九): 模型保存与恢复
  • 原文地址:https://www.cnblogs.com/Lyush/p/3123953.html
Copyright © 2011-2022 走看看