题意:给定一个分层图,即只能够在相邻层次之间流动,给定了各个顶点的层次。要求输出一个阻塞流。
分析:该题直接Dinic求最大流TLE了,网上说采用Isap也TLE,而最大流中的最高标号预流推进(HLPP)能够直接秒掉这一题。当然还有一种挽救的方式就是首先进行一次贪心预流,然后进行dinic。也是第一次听说还有贪心预流这回事,所以找了一份代码特地学习了一番。具体步骤如下:
1.首先将所有节点按照层次进行排序,对每个节点有in[i]和out[i]两个属性,前者表示能够流入到该节点的流量,后者表示能够流出该节点的流量;
2.从层次最低的节点(即源点)开始,设in[S] = inf,表示源点能够进入无限的流量,然后按照层次的递增来推流量,维护好每个节点的in和out值;
3.从层次最高的节点(即汇点)开始,将所有节点的in都清空为0,设in[T] = inf,表示汇点能够收集无限的流量,然后从后往前计算出每条边实际能够流动的流量。
#include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <queue> using namespace std; const int N = 1505; const int M = 300005; const int inf = 0x3f3f3f3f; int n, m, L, SS, TT; int lv[N], rank[N], in[N], out[N]; struct Edge { int v, c, nxt; }e[M<<1]; int idx, head[N]; int dis[N]; char vis[N]; queue<int>q; void insert(int a, int b, int c) { e[idx].v = b, e[idx].c = c; e[idx].nxt = head[a]; head[a] = idx++; } bool bfs() { memset(dis, 0xff, sizeof (dis)); memset(vis, 0, sizeof (vis)); dis[SS] = 0, vis[SS] = 1; q.push(SS); while (!q.empty()) { int u = q.front(); q.pop(); vis[u] = 0; for (int i = head[u]; ~i; i = e[i].nxt) { int v = e[i].v, c = e[i].c; if (dis[v] == -1 && c) { dis[v] = dis[u] + 1; if (!vis[v]) { vis[v] = 1; q.push(v); } } } } return dis[TT] != -1; } int dfs(int u, int flow) { if (u == TT) return flow; int tf = 0, f; for (int i = head[u]; ~i; i = e[i].nxt) { int v = e[i].v, c = e[i].c; if (dis[u]+1 == dis[v] && c && (f = dfs(v, min(flow-tf, c)))) { e[i].c -= f, e[i^1].c += f; tf += f; if (tf == flow) return tf; } } if (!tf) dis[u] = -1; return tf; } void dinic() { while (bfs()) { dfs(SS, inf); } } bool cmp(const int &a, const int &b) { return lv[a] < lv[b]; } void greedy() { memset(in, 0, sizeof (in)); memset(out, 0, sizeof (out)); sort(rank+1, rank+1+n, cmp); in[SS] = inf; for (int i = 1; i <= n; ++i) { int u = rank[i]; for (int j = head[u]; ~j; j = e[j].nxt) { int v = e[j].v, c = e[j].c; if (!(j & 1) && in[u] > out[u]) { int f = min(c, in[u]-out[u]); in[v] += f, out[u] += f; } } } memset(in, 0, sizeof (in)); in[TT] = inf; for (int i = n; i >= 1; --i) { int v = rank[i]; for (int j = head[v]; ~j; j = e[j].nxt) { int u = e[j].v, c = e[j^1].c; if (j & 1 && out[u] > in[u]) { int f = min(c, min(out[u]-in[u], in[v])); in[u] += f, in[v] -= f; e[j].c += f, e[j^1].c -= f; } } } } int main() { int T; scanf("%d", &T); while (T--) { idx = 0; memset(head, 0xff, sizeof (head)); scanf("%d %d %d", &n, &m, &L); for (int i = 1; i <= n; ++i) { rank[i] = i; scanf("%d", &lv[i]); if (lv[i] == 1) SS = i; else if (lv[i] == L) TT = i; } int a, b, c; for (int i = 0; i < m; ++i) { scanf("%d %d %d", &a, &b, &c); insert(a, b, c), insert(b, a, 0); } greedy(), dinic(); for (int i = 0; i < m; ++i) { printf("%d ", e[i<<1|1].c); } } return 0; }