zoukankan      html  css  js  c++  java
  • Codeforces #144 (Div. 1) B. Table (组合数学+dp)

    题目链接:

    B.Table

    题意:

    (n*m)的矩阵使每个(n*n)矩阵里面准确包含(k)个点,问你有多少种放法。

    ((1 ≤ n ≤ 100; n ≤ m ≤ 10^{18}; 0 ≤ k ≤ n^2))

    题解:

    - Let (s_i) number of points in the column (i).

    - Two neighboring squares are drawn at this picture, (A) is the number of point it the left area (it is one column), (B) is the number of points in the middle area and (C) is the number of points in the right area (it is one column too). That's why by definition we ###have:

    - Therefore (A = C).

    - That's why

    - Divide all columns by equivalence classes on the basis of (i mod n) . For all (a) and (b) from one class (s_a = s_b).

    cnta is number of columns in class with

    - There are (C(n,k)^{cnt_a}) ways to draw (k) points in the each of columns in the class (a) independendently of the other classes.

    - (dp[i][j]) is number of ways to fill all columns in classes (1, ... i) in such way that .

    - (cnt_i) take only two values and

    . Let's calc (C(n,a)^{cnt_i}) for all (a) and (cnt_i) and use it to calc our dp. We have (O(n^2·k)) complexity.

    代码:

    #include<bits/stdc++.h>
    #pragma GCC optimize ("O3")
    using namespace std;
    typedef long long ll;
    const int mod = 1e9+7;
    using namespace std;
    const int N = 123;
    const int K = 10000+1230;
    ll pow1[N],pow2[N];
    ll dp[N][K];
    ll c[N][N];
    
    //n*m的矩阵使每个n*n矩阵里面准确包含k个点,问你有多少种放法。
    
    ll quick_pow(ll a,ll b)
    {
        ll tmp=a;
    	ll ans=1;
        while(b)
        {
            if(b&1) ans=(ans*tmp)%mod;
            tmp=(tmp*tmp)%mod;
            b>>=1;
        }
        return ans;
    }
    int main()
    {
        int n,k;
        ll m;
        cin>>n>>m>>k;
        for(int i=0;i<=n;i++) c[i][0]=1;
        for(int i=1;i<=n;i++)
        {
        	for(int j=1;j<=i;j++)
            {
            	c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    		}
    	}             
        for(int i=0;i<=n;i++)
        {
            pow1[i]=quick_pow(c[n][i],m/n);
            pow2[i]=(pow1[i]*c[n][i])%mod;
        }
        dp[0][0]=1;
        ll now;
        for(int i=0;i<n;i++)
        {
        	for(int j=0;j<=k;j++)
        	{
        		if(dp[i][j]!=0)
                {
                    for(int p = 0;p <= n && j + p <= k;p++)
                    {
                        if(i<m%n) now=pow2[p];
                        else now=pow1[p];
                        
                        dp[i+1][j+p]=(dp[i+1][j+p]+dp[i][j]*now)%mod;
                    }
                }
    		}
                
    	}     
        cout<<dp[n][k]<<endl;
        return 0;
    }
    
  • 相关阅读:
    从零开始webpack4.x(五) js处理
    从零开始webpack4.x(四)样式loader
    从零开始webpack4.x(三)html插件
    从零开始webpack4.x(二)基础
    从零开始webpack4.x(一)介绍
    【转】react和vue渲染流程对比
    css3相关
    html5相关
    this指向
    整数划分问题(递归)
  • 原文地址:https://www.cnblogs.com/LzyRapx/p/7655564.html
Copyright © 2011-2022 走看看