zoukankan      html  css  js  c++  java
  • Codeforces #144 (Div. 1) B. Table (组合数学+dp)

    题目链接:

    B.Table

    题意:

    (n*m)的矩阵使每个(n*n)矩阵里面准确包含(k)个点,问你有多少种放法。

    ((1 ≤ n ≤ 100; n ≤ m ≤ 10^{18}; 0 ≤ k ≤ n^2))

    题解:

    - Let (s_i) number of points in the column (i).

    - Two neighboring squares are drawn at this picture, (A) is the number of point it the left area (it is one column), (B) is the number of points in the middle area and (C) is the number of points in the right area (it is one column too). That's why by definition we ###have:

    - Therefore (A = C).

    - That's why

    - Divide all columns by equivalence classes on the basis of (i mod n) . For all (a) and (b) from one class (s_a = s_b).

    cnta is number of columns in class with

    - There are (C(n,k)^{cnt_a}) ways to draw (k) points in the each of columns in the class (a) independendently of the other classes.

    - (dp[i][j]) is number of ways to fill all columns in classes (1, ... i) in such way that .

    - (cnt_i) take only two values and

    . Let's calc (C(n,a)^{cnt_i}) for all (a) and (cnt_i) and use it to calc our dp. We have (O(n^2·k)) complexity.

    代码:

    #include<bits/stdc++.h>
    #pragma GCC optimize ("O3")
    using namespace std;
    typedef long long ll;
    const int mod = 1e9+7;
    using namespace std;
    const int N = 123;
    const int K = 10000+1230;
    ll pow1[N],pow2[N];
    ll dp[N][K];
    ll c[N][N];
    
    //n*m的矩阵使每个n*n矩阵里面准确包含k个点,问你有多少种放法。
    
    ll quick_pow(ll a,ll b)
    {
        ll tmp=a;
    	ll ans=1;
        while(b)
        {
            if(b&1) ans=(ans*tmp)%mod;
            tmp=(tmp*tmp)%mod;
            b>>=1;
        }
        return ans;
    }
    int main()
    {
        int n,k;
        ll m;
        cin>>n>>m>>k;
        for(int i=0;i<=n;i++) c[i][0]=1;
        for(int i=1;i<=n;i++)
        {
        	for(int j=1;j<=i;j++)
            {
            	c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    		}
    	}             
        for(int i=0;i<=n;i++)
        {
            pow1[i]=quick_pow(c[n][i],m/n);
            pow2[i]=(pow1[i]*c[n][i])%mod;
        }
        dp[0][0]=1;
        ll now;
        for(int i=0;i<n;i++)
        {
        	for(int j=0;j<=k;j++)
        	{
        		if(dp[i][j]!=0)
                {
                    for(int p = 0;p <= n && j + p <= k;p++)
                    {
                        if(i<m%n) now=pow2[p];
                        else now=pow1[p];
                        
                        dp[i+1][j+p]=(dp[i+1][j+p]+dp[i][j]*now)%mod;
                    }
                }
    		}
                
    	}     
        cout<<dp[n][k]<<endl;
        return 0;
    }
    
  • 相关阅读:
    python 字节数组和十六进制字符串互转
    python 字符串转换成字节的三种方式
    python 将16进制转为字节
    python tcp
    Mac下安装与配置Go语言开发环境
    Remastersys -- 将正在使用的Ubuntu14.04 制作成镜像文件
    Python四大主流网络编程框架
    Python之dict(或对象)与json之间的互相转化
    Python中通过csv的writerow输出的内容有多余的空行
    python写入csv文件的几种方法总结
  • 原文地址:https://www.cnblogs.com/LzyRapx/p/7655564.html
Copyright © 2011-2022 走看看