zoukankan      html  css  js  c++  java
  • 三角函数公式

    转载: 三角函数公式_百度百科 (baidu.com)

    三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限微分方程的解,将其定义扩展到复数系。
    三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
     
     
    中文名
    三角函数公式
    外文名
    Formulas of trigonometric functions
    适用领域
    几何,代数变换,数学、物理、地理、天文等
    应用学科
    数学、物理、地理、天文地理等

    定义式

    编辑 播报
     
    锐角三角函数
    任意角三角函数
    图形
    直角三角形直角三角形
    任意角三角函数任意角三角函数
    正弦(sin)
    余弦(cos)
    正切(tan或tg)
    余切(cot或ctg)
    正割(sec)
    余割(csc)
    表格参考资料来源:现代汉语词典 [1]  .

    函数关系

    编辑 播报
    倒数关系:①
    ;②
    ;③
    商数关系:①
    ;②
    平方关系:①
    ;②
    ;③

    诱导公式

    编辑 播报
    公式一:设
    为任意角,终边相同的角的同一三角函数的值相等:
    公式二:设
    为任意角,
    的三角函数值之间的关系:
    公式三:任意角
    的三角函数值之间的关系:
    公式四:
    的三角函数值之间的关系:
    公式五:
    的三角函数值之间的关系:
    公式六:
    的三角函数值之间的关系:
    记背诀窍:奇变偶不变,符号看象限 [2]  .即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。
    诱导公式口诀“奇变偶不变,符号看象限”意义:
    k×π/2±a(k∈z)的三角函数值
    (1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
    (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
    记忆方法一:奇变偶不变,符号看象限:
    奇变偶不变:其中的奇偶是指π/2的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,正切变余切。
    符号看象限:根据角的范围以及三角函数在哪个象限的正负,来判断新三角函数的符号。
    记忆方法二:无论α是多大的角,都将α看成锐角.
    诱导公式诱导公式
    以诱导公式二为例:
    若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二。
    以诱导公式四为例:
    诱导公式诱导公式
    若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值。这样,就得到了诱导公式四。
    诱导公式的应用:
    运用诱导公式转化三角函数的一般步骤:
    诱导公式诱导公式
    特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

    基本公式

    编辑 播报

    和差角公式

    二角和差公式
    三角和公式

    和差化积公式

    口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.

    积化和差公式

    倍角公式

    二倍角公式
    三倍角公式
    证明:
    sin3a
    =sin(a+2a)
    =sin2a·cosa+cos2a·sina
    =2sina(1-sin2a)+(1-2sin2a)sina
    =3sina-4sin3a
    cos3a
    =cos(2a+a)
    =cos2acosa-sin2asina
    =(2cos2a-1)cosa-2(1-cos2a)cosa
    =4cos3a-3cosa
    sin3a
    cos3a
    上述两式相比可得:
    tan3a
    四倍角公式
    sin4a=-4×[cosa·sina·(2×sin2a-1)]
    cos4a=8cos4a-8cos2a+1
    tan4a=(4tana-4tan3a)/(1-6tan2a+tan4a) [3] 
    五倍角公式
    n倍角公式
    应用欧拉公式
    .
    上式用于求n倍角的三角函数时,可变形为:
    所以
    其中,Re表示取实数部分,Im表示取虚数部分.而
    所以

    半角公式

    (正负由
    所在的象限决定)

    万能公式

    辅助角公式

    证明:
    由于
    ,显然
    ,且
    故有:

    其它公式

    编辑 播报

    正弦定理

    正弦定理正弦定理
    详见词条:正弦定理
    在任意△ABC中,角ABC所对的边长分别为abc,三角形外接圆的半径为R.则有 [4]  :
    正弦定理变形可得:

    余弦定理

    详见词条:余弦定理
    图1 余弦定理图1 余弦定理
    对于如图1所示的边长为abc而相应角为αβγ的△ABC,有:
    也可表示为:

    降幂公式

    sin²α=[1-cos(2α)]/2
    cos²α=[1+cos(2α)]/2
    tan²α=[1-cos(2α)]/[1+cos(2α)]

    幂级数

    c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
    c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
    它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数。

    泰勒展开式

    泰勒展开式又叫幂级数展开法
    实用幂级数:
    , (!!表示双阶乘
    在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。 [5-6] 

    万能公式

    傅里叶级数

    傅里叶级数又称三角级数

  • 相关阅读:
    element-ui做表单验证 v-for遍历表单 自动生成校验规则 pc移动双适配
    element-ui练习使用总结
    js监听页面标签切换
    对象数组,按照没想中特定的属性(按中文拼音)排序
    调用七牛云存储文件,返回url
    javascript中的class类 以及class的继承
    javascript原型继承
    javascript面向对象 用new创建一个基于原型的javascript对象
    java中的变量和数据类型
    css的伪元素
  • 原文地址:https://www.cnblogs.com/MCSFX/p/15702761.html
Copyright © 2011-2022 走看看