zoukankan      html  css  js  c++  java
  • 代数基础

    矩阵微分

    (X in mathbb{R}^{m imes n}), (Y in mathbb{R}^{n imes p})
    定义:

    [mathrm{d}X = left [ egin{array}{ccc} mathrm{d}X_{11} & ldots & mathrm{d}X_{1n} \ vdots & ddots & vdots \ mathrm{d}X_{m1} & cdots & mathrm{d}X_{mn} end{array} ight ] ]

    (mathrm{d}(X+Y) = mathrm{d}X + mathrm{d}Y)

    根据(mathrm{d}(X_{ij}+Y_{ij}) = mathrm{d}X_{ij} + mathrm{d}Y_{ij})可得。

    (mathrm{d}(XY) = (mathrm{d}X)Y + Xmathrm{d}Y)

    [mathrm{d}[XY]_{ij} = mathrm{d}(X_i^TY^j) = sum limits_{k=1}^n mathrm{d}(X_{ik}Y_{kj})=sum limits_{k=1}^n [mathrm{d}X_{ik} Y_{kj} + X_{ik}mathrm{d}Y_{kj}] = [(mathrm{d}X)Y + Xmathrm{d}Y]_{ij} ]

    (mathrm{d}X^T = (mathrm{d}X)^T)

    [[mathrm{d}X^T]_{ij} = mathrm{d}X_{ji} = [(mathrm{d}X)^T]_{ij} ]

    (mathrm{dTr}(X)) = (mathrm{Tr}(mathrm{d}X))

    这里假设(X in mathbb{R}^{n imes n})

    [mathrm{dTr}(X) = sum limits_{i=1}^n mathrm{d}X_{ii} = mathrm{Tr}(mathrm{d}X) ]

    (mathrm{d}X^{-1} = -X^{-1}mathrm{d}X X^{-1})

    这里假设(X in mathbb{R}^{n imes n}),可逆。

    [XX^{-1} = I ]

    对俩边同时微分可得:

    [mathrm{d}XX^{-1}+Xmathrm{d}X^{-1} = 0 ]

    所以

    [mathrm{d}X^{-1} = -X^{-1}mathrm{d}X X^{-1} ]

    (mathrm{d}|X| = mathrm{Tr}(X^*mathrm{d}X))

    这里假设(X in mathbb{R}^{n imes n})
    其中(|cdot|)表行列式,(X^*)(X)的伴随矩阵,当(X)可逆的时候(X^{-1}|X| = X^*)
    我们用(x_{ij})来表示(X_{ij})的代数余子式,对于任意(X_{ij})而言:

    [|X| = sum limits_{k=1}^n X_{kj} x_{kj} ]

    而且其中仅有第(i)项与(X_{ij})有关,
    所以

    [frac{partial |X|}{partial X_{ij}} = x_{ij} ]

    [[X^{*}]_{ij} = x_{ji} ]

    容易证得(mathrm{Tr}(X^*mathrm{d}X) =sum limits_{i,j=1}^n x_{ij} mathrm{d}X_{ij})得证。

    ((A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1})

    其中(A, B)均可逆.
    证:

    [(A+B)A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1} = (I+BA^{-1})(BA^{-1}+I)^{-1}=I ]

    证毕.

    ((A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1})

    (A in mathbb{R}^{n imes n})为非奇异矩阵, (U in mathbb{R}^{n imes m}, V in mathbb{R}^{m imes n}), 令(C in mathbb{R}^{m imes m })为非奇异矩阵, 则(A+UCV)可逆当且仅当(C^{-1}+VA^{-1}U)可逆, 并且

    [(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}. ]

    证明:
    (Leftarrow)
    (X:=A+UCV), (Y=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.)

    [egin{array}{ll} XY&= I+UCVA^{-1}-(U+UCVA^{-1}U)(C^{-1}+VA^{-1}U)^{-1}VA^{-1} \ &= I+UCVA^{-1}-UCVA^{-1} \ &= I. end{array} ]

    [egin{array}{ll} YX&= I+A^{-1}UCV-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}(V+VA^{-1}UCV) \ &= I+A^{-1}UCV-A^{-1}UCV \ &= I. end{array} ]

    (Rightarrow)

    (C^{-1}+VA^{-1}U)不可逆, 则存在特征向量(x):

    [(C^{-1}+VA^{-1}U)x=0, ]

    [(A+UCV)(A^{-1}Ux)=Ux-Ux=0. ]

    特例

    (C=1, U=u in mathbb{R}^n, V^T=v in mathbb{R}^d), 则

    [(A+uv^T)^{-1}=A^{-1}-frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}. ]

  • 相关阅读:
    SpringMvc框架总结
    Spring框架总结
    Redis常用数据类型
    从配置文件中获取list,set,map值
    Oracle数据库编码格式不同造成乱码
    事务
    Spring-动态代理
    关于Maven项目pom.xml文件不报错却有红叉的问题
    Spring—SSJ集成&声明式事务管理
    Spring-构造注入&注解注入&代理模式&AOP
  • 原文地址:https://www.cnblogs.com/MTandHJ/p/10834979.html
Copyright © 2011-2022 走看看