zoukankan      html  css  js  c++  java
  • poj3335

    半平面交&多边形内核。因为没注意了点的情况自闭了。

    https://blog.csdn.net/qq_40861916/article/details/83541403

    这个说的贼好。

    多边形内核就是多边形内部的一块区域/一个点,能看到多边形的任何地方。

    怎么求呢。

    首先每条边要逆时针。

    然后我们对所有的边按照与 +x轴的逆时针夹角进行排序。从小到大。

    这之后我们每次用双端队列维护已经求出的多边形。

    每加入一条新边的话,我们check一下

    这个图说的太好了!话说这个图的blog我在上面放了链接不算盗用叭。。。

    然后就没了。。

      1 #include <iostream>
      2 #include <cmath>
      3 #include <algorithm>
      4 #include <cstdio>
      5 #include <vector>
      6 #include <deque>
      7 #define rep(x) for(int i=0;i<x;i++)
      8 using namespace std;
      9 typedef double db;
     10 const db eps=1e-8;
     11 const db pi=acos(-1);
     12 int sign(db k){
     13     if (k>eps) return 1; else if (k<-eps) return -1; return 0;
     14 }
     15 int cmp(db k1,db k2){return sign(k1-k2);}
     16 int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
     17 struct point{
     18     db x,y;
     19     point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
     20     point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
     21     point operator * (db k1) const{return (point){x*k1,y*k1};}
     22     point operator / (db k1) const{return (point){x/k1,y/k1};}
     23     int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
     24     // 逆时针旋转
     25     point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
     26     point turn90(){return (point){-y,x};}
     27     bool operator < (const point k1) const{
     28         int a=cmp(x,k1.x);
     29         if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
     30     }
     31     db abs(){return sqrt(x*x+y*y);}
     32     db abs2(){return x*x+y*y;}
     33     db dis(point k1){return ((*this)-k1).abs();}
     34     point unit(){db w=abs(); return (point){x/w,y/w};}
     35     void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
     36     void print(){printf("%.11lf %.11lf
    ",x,y);}
     37     db getw(){return atan2(y,x);}
     38     point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
     39     int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
     40 };
     41 int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
     42 db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
     43 db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
     44 db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));}
     45 // -pi -> pi
     46 int compareangle (point k1,point k2){
     47     return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>0);
     48 }
     49 point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影
     50     point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2());
     51 }
     52 point reflect(point k1,point k2,point q){return proj(k1,k2,q)*2-q;}
     53 int clockwise(point k1,point k2,point k3){// k1 k2 k3 逆时针 1 顺时针 -1 否则 0
     54     return sign(cross(k2-k1,k3-k1));
     55 }
     56 int checkLL(point k1,point k2,point k3,point k4){// 求直线 (L) 线段 (S)k1,k2 和 k3,k4 的交点
     57     return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
     58 }
     59 point getLL(point k1,point k2,point k3,point k4){
     60     db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2);
     61 }
     62 int intersect(db l1,db r1,db l2,db r2){
     63     if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-1&&cmp(r2,l1)!=-1;
     64 }
     65 int checkSS(point k1,point k2,point k3,point k4){
     66     return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
     67            sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0&&
     68            sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
     69 }
     70 db disSP(point k1,point k2,point q){
     71     point k3=proj(k1,k2,q);
     72     if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2));
     73 }
     74 db disSS(point k1,point k2,point k3,point k4){
     75     if (checkSS(k1,k2,k3,k4)) return 0;
     76     else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k4,k1),disSP(k3,k4,k2)));
     77 }
     78 int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;}
     79 struct circle{
     80     point o; db r;
     81     void scan(){o.scan(); scanf("%lf",&r);}
     82     int inside(point k){return cmp(r,o.dis(k));}
     83 };
     84 struct line{
     85     // p[0]->p[1]
     86     point p[2];
     87     line(point k1,point k2){p[0]=k1; p[1]=k2;}
     88     point& operator [] (int k){return p[k];}
     89     int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>=0;}//非严格包含。
     90     point dir(){return p[1]-p[0];}
     91     line push(){ // 向外 ( 左手边 ) 平移 eps
     92         const db eps = 1e-6;
     93         point delta=(p[1]-p[0]).turn90().unit()*eps;
     94         return {p[0]-delta,p[1]-delta};
     95     }
     96 };
     97 point getLL(line k1,line k2){return getLL(k1[0],k1[1],k2[0],k2[1]);}
     98 int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;}
     99 int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;}
    100 int operator < (line k1,line k2){
    101     if (sameDir(k1,k2)) return k2.include(k1[0]);
    102     return compareangle(k1.dir(),k2.dir());
    103 }
    104 int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}
    105 vector<line> getHL(vector<line> &L){ // 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针
    106     sort(L.begin(),L.end()); deque<line> q;
    107     for (int i=0;i<(int)L.size();i++){
    108         if (i&&sameDir(L[i],L[i-1])) continue;
    109         while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back();
    110         while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
    111         q.push_back(L[i]);
    112     }
    113     while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back();
    114     while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front();
    115     vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);
    116     return ans;
    117 }
    118 int t,n;
    119 point p[10005];
    120 bool cw(){//时针
    121     db s=0;
    122     for(int i=1;i<n-1;i++){
    123         s+=cross(p[i]-p[0],p[i+1]-p[0]);
    124     }
    125     return s>0;
    126 }
    127 vector<line> l;
    128 int main(){
    129     scanf("%d",&t);
    130     while (t--){
    131         scanf("%d",&n);
    132         rep(n) scanf("%lf%lf",&p[i].x,&p[i].y);
    133         if(!cw())reverse(p,p+n);
    134         for(int i=0;i<n;i++){
    135             l.push_back(line(p[i],p[(i+1)%n]));
    136         }
    137         l=getHL(l);
    138         if(l.size()>=3){
    139             printf("YES
    ");
    140         } else{
    141             printf("NO
    ");
    142         }
    143         l.clear();
    144     }
    145 }
    146 /**
    147 1
    148 17
    149 2 -1  2 -2  1 -2  0 -1  -1 -2  -2 -2  -2 -1  -1 0  -2 1  -2 2  -1 2  0 1  1 2  3 2  3 1  2 1  1 0
    150 
    151 */
    View Code
  • 相关阅读:
    HDU 5441 离线处理 + 并查集
    [转载]HDU 3478 判断奇环
    POJ 1637 混合图的欧拉回路判定
    [转载] 一些图论、网络流入门题总结、汇总
    UVA 820 --- POJ 1273 最大流
    [转载 ]POJ 1273 最大流模板
    POJ 3041 -- 二分图匹配
    2014西安现场赛F题 UVALA 7040
    UVA 12549
    割点、桥(一点点更新)
  • 原文地址:https://www.cnblogs.com/MXang/p/10452635.html
Copyright © 2011-2022 走看看