multiprocessing.Pipe([duplex])
返回2个连接对象(conn1, conn2),代表管道的两端,默认是双向通信.如果duplex=False,conn1只能用来接收消息,conn2只能用来发送消息.不同于os.open之处在于os.pipe()返回2个文件描述符(r, w),表示可读的和可写的
实例如下:
#!/usr/bin/python #coding=utf-8 import os from multiprocessing import Process, Pipe def send(pipe): pipe.send(['spam'] + [42, 'egg']) pipe.close() def talk(pipe): pipe.send(dict(name = 'Bob', spam = 42)) reply = pipe.recv() print('talker got:', reply) if __name__ == '__main__': (con1, con2) = Pipe() sender = Process(target = send, name = 'send', args = (con1, )) sender.start() print "con2 got: %s" % con2.recv()#从send收到消息 con2.close() (parentEnd, childEnd) = Pipe() child = Process(target = talk, name = 'talk', args = (childEnd,)) child.start() print('parent got:', parentEnd.recv()) parentEnd.send({x * 2 for x in 'spam'}) child.join() print('parent exit')
输出如下:
con2 got: ['spam', 42, 'egg'] ('parent got:', {'name': 'Bob', 'spam': 42}) ('talker got:', set(['ss', 'aa', 'pp', 'mm'])) parent exit
multiprocessing中使用子进程概念
from multiprocessing import Process
可以通过Process来构造一个子进程
p = Process(target=fun,args=(args))
再通过p.start()来启动子进程
再通过p.join()方法来使得子进程运行结束后再执行父进程
from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print 'Run child process %s (%s)...' % (name, os.getpid()) if __name__=='__main__': print 'Parent process %s.' % os.getpid() p = Process(target=run_proc, args=('test',)) print 'Process will start.' p.start() p.join() print 'Process end.'
在multiprocessing中使用pool
如果需要多个子进程时可以考虑使用进程池(pool)来管理
from multiprocessing import Pool
from multiprocessing import Pool import os, time def long_time_task(name): print 'Run task %s (%s)...' % (name, os.getpid()) start = time.time() time.sleep(3) end = time.time() print 'Task %s runs %0.2f seconds.' % (name, (end - start)) if __name__=='__main__': print 'Parent process %s.' % os.getpid() p = Pool() for i in range(5): p.apply_async(long_time_task, args=(i,)) print 'Waiting for all subprocesses done...' p.close() p.join() print 'All subprocesses done.'
pool创建子进程的方法与Process不同,是通过
p.apply_async(func,args=(args))实现,一个池子里能同时运行的任务是取决你电脑的cpu数量,如我的电脑现在是有4个cpu,那会子进程task0,task1,task2,task3可以同时启动,task4则在之前的一个某个进程结束后才开始。
代码中的p.close()是关掉进程池子,是不再向里面添加进程了,对Pool
对象调用join()
方法会等待所有子进程执行完毕,调用join()
之前必须先调用close()
,调用close()
之后就不能继续添加新的Process
了。
当时也可以是实例pool的时候给它定义一个进程的多少
如果上面的代码中p=Pool(5)那么所有的子进程就可以同时进行
多个子进程间的通信
多个子进程间的通信就要采用第一步中说到的Queue,比如有以下的需求,一个子进程向队列中写数据,另外一个进程从队列中取数据,
#coding:gbk from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in ['A', 'B', 'C']: print 'Put %s to queue...' % value q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(True) print 'Get %s from queue.' % value time.sleep(random.random()) else: break if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 等待pw结束: pw.join() # 启动子进程pr,读取: pr.start() pr.join() # pr进程里是死循环,无法等待其结束,只能强行终止: print print '所有数据都写入并且读完'
关于上面代码的几个有趣的问题
if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() p = Pool() pw = p.apply_async(write,args=(q,)) pr = p.apply_async(read,args=(q,)) p.close() p.join() print '所有数据都写入并且读完'
如果main函数写成上面的样本,本来我想要的是将会得到一个队列,将其作为参数传入进程池子里的每个子进程,但是却得到
RuntimeError: Queue objects should only be shared between processes through inheritance
的错误,查了下,大意是队列对象不能在父进程与子进程间通信,这个如果想要使用进程池中使用队列则要使用multiprocess的Manager类
if __name__=='__main__': manager = multiprocessing.Manager() # 父进程创建Queue,并传给各个子进程: q = manager.Queue() p = Pool() pw = p.apply_async(write,args=(q,)) time.sleep(0.5) pr = p.apply_async(read,args=(q,)) p.close() p.join() print print '所有数据都写入并且读完'
这样这个队列对象就可以在父进程与子进程间通信,不用池则不需要Manager,以后再扩展multiprocess中的Manager类吧
关于锁的应用,在不同程序间如果有同时对同一个队列操作的时候,为了避免错误,可以在某个函数操作队列的时候给它加把锁,这样在同一个时间内则只能有一个子进程对队列进行操作,锁也要在manager对象中的锁
#coding:gbk from multiprocessing import Process,Queue,Pool import multiprocessing import os, time, random # 写数据进程执行的代码: def write(q,lock): lock.acquire() #加上锁 for value in ['A', 'B', 'C']: print 'Put %s to queue...' % value q.put(value) lock.release() #释放锁 # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(False) print 'Get %s from queue.' % value time.sleep(random.random()) else: break if __name__=='__main__': manager = multiprocessing.Manager() # 父进程创建Queue,并传给各个子进程: q = manager.Queue() lock = manager.Lock() #初始化一把锁 p = Pool() pw = p.apply_async(write,args=(q,lock)) pr = p.apply_async(read,args=(q,)) p.close() p.join() print print '所有数据都写入并且读完'