zoukankan      html  css  js  c++  java
  • 杜教筛之逆运算1

    [sum^n_{i=1}lfloorfrac{n}{i} floor f(i)=sum^n_{i=1}I*f(i) ]

    证明:
    设$$F(x)=sum^x_{i=1}lfloorfrac{x}{i} floor f(i)$$

    [F(x)-F(x-1)=sum^x_{i=1}lfloorfrac{x}{i} floor f(i)-sum^{x-1}_{i=1}lfloorfrac{x-1}{i} floor f(i) ]

    [=sum^{x-1}_{i=1}(lfloorfrac{x}{i} floor-lfloorfrac{x-1}{i} floor)f(i)+f(x) ]

    [ ext{又因为}lfloorfrac{x}{i} floor-lfloorfrac{x-1}{i} floor=1 ext{当且仅当}i | x ]

    所以

    [F(x)-F(x-1)=sum_{d|x}f(d)=I*f(x) ]

    [=>F(x)=F(1)+sum_{i=2}^xI*f(i)=sum^x_{i=1}I*f(i) ]

    [sum^n_{i=1}lfloorfrac{n}{i} floor f(i)=sum^n_{i=1}I*f(i) ]

    其中(I)为恒等函数(I(x)=1)

    应用举例:

    [1.sum^n_{i=1}sum_{j=1}^nmu(i)phi(j)lfloorfrac{n}{ij} floor=sum_{T=1}^nlfloorfrac{n}{T} floormu*phi(T)=sum_{i=1}^nphi(i) ]

    [2.sum^n_{i=1}lfloorfrac{n}{i} floorphi(i)=sum_{i=1}^ni=n*(n+1)/2 ]

    还有很多式子可以用其化简(基本上可以和(I)卷的都可以)

    实际上,这就是杜教筛式子特殊化的逆运算

    杜教筛式子:$$sum_{i=1}nf(i)sum_{j=1}{lfloorfrac{n}{i} floor}g(i)=sum_{i=1}^nf*g(i)$$

    若把(g(i))改为(I(i))则可得上述式子

    杜教筛式子在此就不证明,很好证的

  • 相关阅读:
    Makefile学习
    Tmux使用
    Linux进程管理学习资料
    Linux内存管理学习资料
    Python常用的软件包
    Docker 学习
    Intel处理器技术文档
    Firefly-RK3399笔记
    Linux Kernel API
    ARM 技术文档
  • 原文地址:https://www.cnblogs.com/MYsBlogs/p/10911014.html
Copyright © 2011-2022 走看看