zoukankan      html  css  js  c++  java
  • 多项式加法和乘法的实现

    多项式的表示可以使用数组也可以使用链表

    • 数组表示起来简单,调试方便。但需要事先确定数组的大小。
    • 链表表示起来动态性强,但编程复杂,调试起来困难。

    为了提高对链表的操作,后面介绍的程序,均使用链表来完成。

    注意:下列链表没有头节点

    //多项式的加法和乘法
    #define  _CRT_SECURE_NO_WARNINGS
    #include<stdio.h>
    #include<stdlib.h>
    
    struct PolyNode 
    {
    	int Coef;
    	int Expon;
    	struct PolyNode* Next;  //指向下一个节点
    };
    
    void Attach(int coef,int expon,struct PolyNode** PtrRear)
    {
    	struct PolyNode* p;
    	p = (struct PolyNode*)malloc(sizeof(struct PolyNode));
    	p->Coef = coef;
    	p->Expon = expon;
    	p->Next = NULL;
    	(*PtrRear)->Next = p;
    	(*PtrRear) = p;  //修改PtrRear的值
    }
    
    struct PolyNode* ReadPoly()
    {
    	int N;  //存储多项式的项数
    	int c;  //多项式的系数
    	int e;  //多项式的指数
    	struct PolyNode* p;  //表头
    	struct PolyNode* Rear;
    	struct PolyNode* t;
    	p = (struct PolyNode*)malloc(sizeof(struct PolyNode));
    	p->Next = NULL;
    	Rear = p;
    	scanf("%d",&N);
    	while (N--)
    	{
    		scanf("%d %d",&c,&e);
    		Attach(c,e,&Rear);
    	}
    	t = p;
    	p = p->Next;
    	free(t);  //删除临时生成的头节点
    	return p;
    }
    //作用:比较两个指数的大小
    //返回值: e1 > e2 返回 1
    //         e1 < e2 返回 -1
    //         e1 = e2 返回 0
    int Compare(int e1,int e2)
    {
    	if (e1 > e2)
    	{
    		return 1;
    	}
    	else if (e1 < e2)
    	{
    		return -1;
    	}
    	else
    	{
    		return 0;
    	}
    }
    
    //将两个多项式相加
    struct PolyNode* PolyAdd(struct PolyNode* P1, struct PolyNode* P2)
    {
    	struct PolyNode* rear;
    	struct PolyNode* front;
    	struct PolyNode* temp;
    	int sum;
    
    	//为方便表头插入,先产生一个临时空节点作为结果多项式链表头
    	rear = (struct PolyNode*)malloc(sizeof(struct PolyNode));
    	front = rear;
    
    	while (P1 && P2)  //当两个多项式都有非零项待处理时
    	{
    		switch (Compare(P1->Expon, P2->Expon))
    		{
    		case 1:
    			Attach(P1->Coef,P1->Expon,&rear);
    			P1 = P1->Next;
    			break;
    		case -1:
    			Attach(P2->Coef, P2->Expon, &rear);
    			P2 = P2->Next;
    			break;
    		case 0:
    			sum = P1->Coef + P2->Coef;
    			if (sum)
    			{
    				Attach(sum,P1->Expon,&rear);
    			}
    			P1 = P1->Next;
    			P2 = P2->Next;
    			break;
    		}
    	}
    	//将未处理完的另一个多项式的所有节点依次复制到结果多项式中去
    	for (;P1;P1 = P1->Next)
    	{
    		Attach(P1->Coef,P1->Expon,&rear);
    	}
    	for (; P2; P2 = P2->Next)
    	{
    		Attach(P2->Coef, P2->Expon, &rear);
    	}
    	rear->Next = NULL;
    	temp = front;
    	front = front->Next; //令front指向结果多项式第一个非零项
    	free(temp);
    	return front;
    }
    //将两个多项式相乘
    struct PolyNode* PolyMult(struct PolyNode* P1, struct PolyNode* P2)
    {
    	struct PolyNode* rear;
    	struct PolyNode* P;
    	struct PolyNode* t1 = P1;
    	struct PolyNode* t2 = P2;
    	struct PolyNode* t;
    	int sumc;
    	int sume;
    
    	if (NULL == P1 || NULL == P2)
    	{
    		return NULL;
    	}
    	//产生一个临时空节点作为结果多项式链表头
    	P = (struct PolyNode*)malloc(sizeof(struct PolyNode));
    	rear = P;
    	while (t2)
    	{
    		//先用P1的第一项乘以P2得到P
    		Attach(t1->Coef * t2->Coef,t1->Expon + t2->Expon,&rear);
    		t2 = t2->Next;
    	}
    	t1 = t1->Next;
    
    	while (t1)
    	{
    		rear = P;
    		t2 = P2;
    		while (t2)
    		{
    			sumc = t1->Coef * t2->Coef;  //系数相乘
    			sume = t1->Expon + t2->Expon;  //指数相加
    			while (rear->Next && rear->Next->Expon > sume)
    			{
    				rear = rear->Next;
    			}
    			if (rear->Next && rear->Next->Expon == sume)
    			{
    				if (rear->Next->Coef + sumc)
    				{
    					//rear->Next->Coef + sumc != 0
    					rear->Next->Coef = rear->Next->Coef + sumc;
    				}
    				else
    				{
    					//rear->Next->Coef + sumc = 0
    					//删除一个节点
    					t = rear->Next;
    					rear->Next = t->Next;
    					free(t);
    				}
    			}
    			else //rear->Next->Expon < sume
    			{
    				//向链表中插入新的节点
    				t = (struct PolyNode*)malloc(sizeof(struct PolyNode));
    				t->Coef = sumc;
    				t->Expon = sume;
    				t->Next = NULL;
    				t->Next = rear->Next;
    				rear->Next = t;
    
    				rear = rear->Next;
    			}
    			t2 = t2->Next;
    		}
    		t1 = t1->Next;
    	}
    	t2 = P;
    	P = P->Next;
    	free(t2);
    	return P;
    }
    //将多项式输出
    void PrintPoly(struct PolyNode* P)
    {
    	int flag = 0;
    	if (NULL == P)
    	{
    		printf("0 0
    ");
    	    return 0;
    	}
    	while (P)
    	{
    		if (!flag)
    		{
    			flag = 1;
    		}
    		else
    		{
    			printf(" ");
    		}
    		printf("%d %d", P->Coef, P->Expon);
    		P = P->Next;
    	}
    	printf("
    ");
    }
    
    int main()
    {
    	struct PolyNode* P1;
    	struct PolyNode* P2;
    	struct PolyNode* PP;
    	struct PolyNode* PS;
    
    	P1 = ReadPoly();
    	P2 = ReadPoly();
    	PP = PolyAdd(P1, P2);
    	printf("两多项式相加的结果为:
    ");
    	PrintPoly(PP);
    	printf("两个多项式相乘的结果为:
    ");
    	PS = PolyMult(P1,P2);
    	PrintPoly(PS);
    	system("pause");
    	return 0;
    }
    

    参考资料:
    1 《数据结构》 陈越主编
    2 慕课网 《数据结构》 陈越老师,何钦铭老师主讲

  • 相关阅读:
    android webView使用
    Android开发者必知的开发资源(转载)
    Android中的消息推送(转载)
    Android消息处理系统——Looper、Handler、Thread(转载)
    Android之单元测试学习(转载)
    ndroid获得Bitmap的三种方法(转载)
    Android性能调优(转载)
    Android的开机流程(转载)
    Android命名规范(自定义)(转载)
    无法解决 equal to 操作中 Latin1_General_CI_AI 和 Chinese_PRC
  • 原文地址:https://www.cnblogs.com/Manual-Linux/p/11307955.html
Copyright © 2011-2022 走看看