zoukankan      html  css  js  c++  java
  • 用CNN对CIFAR10进行分类(pytorch)

    CIFAR10有60000个(32*32)大小的有颜色的图像,一共10种类别,每种类别有6000个。

    训练集一共50000个图像,测试集一共10000个图像。

    先载入数据集

    import numpy as np
    import torch
    import torch.optim as optim
    
    from torchvision import datasets
    import torchvision.transforms as transforms
    
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    
    trainset = datasets.CIFAR10(root='./data', train=True,
                                            download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                              shuffle=True, num_workers=2)
    
    testset = datasets.CIFAR10(root='./data', train=False,
                                           download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                             shuffle=False, num_workers=2)
    

    再定义网络架构

    import torch.nn.functional as F
    import torch.nn as nn
    
    class classifier(nn.Module):
        def __init__(self):
            super().__init__()
            '''输入为3*32*32,尺寸减半是因为池化层'''
            self.conv1 = nn.Conv2d(3, 16, 3, padding=1)   #输出为16*16*16
            self.conv2 = nn.Conv2d(16, 32, 3, padding=1)  #输出为32*8*8
            self.pool = nn.MaxPool2d(2, 2)
            self.fc1 = nn.Linear(32 * 8 * 8, 512)
            self.fc2 = nn.Linear(512, 10)
            self.dropout = nn.Dropout(0.2)     #防止过拟合
            
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            
            x = x.view(-1, 32 * 8 * 8)
            x = self.dropout(x)
            x = F.relu(self.fc1(x))
            x = self.dropout(x)
            x = self.fc2(x)
            return x
    

    开始训练!

    model = classifier()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    epochs = 10
    
    for e in range(epochs):
        train_loss = 0
        
        for data, target in train_loader:
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            train_loss += loss.item() * data.size(0)	#loss.item()是平均损失,平均损失*batch_size=一次训练的损失
            
        train_loss = train_loss/len(train_loader.dataset)
        
        print('Epoch: {} 	 Training Loss:{:.6f}'.format(e+1, train_loss))
    
    下面是损失的输出
    Epoch: 1 	 Training Loss:1.366521
    Epoch: 2 	 Training Loss:1.063830
    Epoch: 3 	 Training Loss:0.916826
    Epoch: 4 	 Training Loss:0.799573
    Epoch: 5 	 Training Loss:0.708303
    Epoch: 6 	 Training Loss:0.627443
    Epoch: 7 	 Training Loss:0.564043
    Epoch: 8 	 Training Loss:0.503542
    Epoch: 9 	 Training Loss:0.465513
    Epoch: 10 	 Training Loss:0.418729
    

    看看在验证集上的表现如何!

    class_correct = list(0. for i in range(10))
    class_total = list(0. for i in range(10))
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs, 1)
            c = (predicted == labels).squeeze()
            for i in range(4):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1
    
    
    for i in range(10): 
        print('Accuracy of %5s : %2d %%' % (
            classes[i], 100 * class_correct[i] / class_total[i]))
    
    以及它的输出
    Accuracy of plane : 74 %
    Accuracy of   car : 76 %
    Accuracy of  bird : 55 %
    Accuracy of   cat : 56 %
    Accuracy of  deer : 54 %
    Accuracy of   dog : 54 %
    Accuracy of  frog : 81 %
    Accuracy of horse : 72 %
    Accuracy of  ship : 74 %
    Accuracy of truck : 68 %
    
  • 相关阅读:
    修改图片大小 分辨率
    Tools
    写log
    4Sum
    3Sum Closest
    避免调试时加载符号
    SDN期末作业——负载均衡
    SDN第五次上机作业
    个人作业——软件工程实践总结作业
    SDN第四次作业
  • 原文地址:https://www.cnblogs.com/MartinLwx/p/10549229.html
Copyright © 2011-2022 走看看