zoukankan      html  css  js  c++  java
  • Hdoj 1421.搬寝室 题解

    Problem Description

    搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2k件过去就行了.但还是会很累,因为2k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.

    Input

    每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).

    Output

    对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.

    Sample Input

    2 1
    1 3
    

    Sample Output

    4
    

    Author

    xhd

    Source

    ACM暑期集训队练习赛(二)


    思路

    显然,如果要让疲劳度最低那么一定要选择重量相邻的,所以要对所有的物品按照重量进行一次排序

    (f[i][j])表示有(i)个物品,从中挑(j)对物品的最小可能疲劳度,显然这个状态只能来自于(f[i-1][j])(f[i-2][j-1])两种,分别处理。

    状态转移方程式为:

    (f[i][j] = min(f[i-1][j], f[i-2][j-1] + (a[i-1]-a[i-2])*(a[i-1]-a[i-2]));)

    (:且i:2→n;j:1→k 且j<=i)

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int INF = 0xfffffff;
    int a[2001];
    int f[2001][2001];
    int main()
    {
    	int n,k;
    	while(cin>>n>>k)
    	{
    		for(int i=0;i<n;i++)	cin >> a[i];
    		for(int i=0;i<=n;i++)
    			for(int j=0;j<=k;j++)
    				j == 0 ? f[i][j] = 0 :f[i][j] = INF; 
    		sort(a,a+n);
    		
    		for(int i=2;i<=n;i++)
    			for(int j=1;j<=k&&j<=i;j++)
    				f[i][j] = min(f[i-1][j], f[i-2][j-1] + (a[i-1]-a[i-2])*(a[i-1]-a[i-2]));
    		cout << f[n][k] << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    梯度下降法实现python[转载]
    PAT Maximum Subsequence Sum[最大子序列和,简单dp]
    PAT Sign In and Sign Out[非常简单]
    PAT 1015 Reversible Primes[求d进制下的逆][简单]
    outlook 召回邮件 (zz)
    The Microsoft.Jet.OLEDB.4.0 provider is not registered on the local machine (zz)
    Determine Microsoft Database AccessEngine Version (zz)
    企业的十三中死法
    c#事件学习
    20071017我们的新家
  • 原文地址:https://www.cnblogs.com/MartinLwx/p/9853127.html
Copyright © 2011-2022 走看看