zoukankan      html  css  js  c++  java
  • 每日一题_191102

    已知函数(f(x)=x{ln}x+dfrac{1}{2}ax^3-ax^2),(ainmathbb{R}).
    ((1))(a=0)时,求(f(x))的单调区间;
    ((2)) 若函数(g(x)=dfrac{f(x)}{x})存在两个极值点(x_1,x_2),求(g(x_1)+g(x_2))的取值范围.
    解析:
    ((1))(a=0)时,对(f(x))求导可得$$f'(x)=1+{ln}x,x>0.$$
    此时(f(x))(left(0,dfrac{1}{mathrm{e}} ight))单调递减,在(left[dfrac{1}{mathrm{e}},+infty ight))单调递增.
    ((2)) 由题$$
    g(x)={ln}x+dfrac{1}{2}ax^2-ax,x>0.$$对(g(x))求导可得$$
    g'(x)=dfrac{1}{x}+ax-a=dfrac{ax^2-ax+1}{x},x>0.$$
    若要使得(g'(x))((0,+infty))有两个变号零点,需且仅需(g'left(dfrac{1}{2} ight)<0),即(a>4).根据韦达定理可得$$
    x_1+x_2=dfrac{1}{2},x_1x_2=dfrac{1}{a}.$$
    所以$$
    egin{split}
    &g(x_1)+g(x_2)
    =&{ln}(x_1x_2)+dfrac{1}{2}acdotleft(x_12+x_22 ight)-aleft(x_1+x_2 ight)
    =&{ln}(x_1x_2)+dfrac{1}{2}acdotleft[left(x_1+x_2 ight)^2-2x_1x_2 ight]-aleft(x_1+x_2 ight)
    =&-{ln}a+dfrac{1}{2}acdotleft(dfrac{1}{4}-dfrac{2}{a} ight)-dfrac{a}{2}
    =&-{ln}a-dfrac{3}{8}a-1.
    end{split}$$
    显然,上述表达式是关于(a)的单调递减函数,其中(a>4).因此所求表达式的取值范围为(left(-infty,-2{ln}2-dfrac{5}{2} ight)).

  • 相关阅读:
    第03组 Alpha冲刺(3/6)
    第03组 Alpha冲刺(2/6)
    第03组 Alpha冲刺(1/6)
    团队项目-选题报告
    第3组 团队展示
    福大软工 · BETA 版冲刺前准备(团队)
    Alpha 事后诸葛亮
    Alpha冲刺
    Alpha冲刺-(9/10)
    Alpha冲刺
  • 原文地址:https://www.cnblogs.com/Math521/p/11785963.html
Copyright © 2011-2022 走看看