zoukankan      html  css  js  c++  java
  • 每日一题_191117

    半径为(1)的圆上有三个动点(A,B,C),则(overrightarrow{AB}cdot overrightarrow{AC})的最小值为((qquad))
    (mathrm{A}.-1) (qquadmathrm{B}.-dfrac{3}{4}) (qquadmathrm{C}.-dfrac{1}{2}) (qquadmathrm{D}.-dfrac{1}{4})
    解析:
    不妨设$$
    A(0,1),B(cosalpha,sinalpha),C(coseta,sineta),alpha,etainleft[0,2pi ight).$$于是$$
    egin{split}
    overrightarrow{AB}cdotoverrightarrow{AC}&=left( cosalpha,sinalpha-1 ight)cdot left(coseta,sineta-1 ight)
    &=cosalphacoseta+sinalphasineta-left(sinalpha+sineta ight)+1
    &=cosleft(alpha-eta ight)-2sindfrac{alpha+eta}{2}cosdfrac{alpha-eta}{2}+1
    &=2cosdfrac{alpha-eta}{2}cdot left(cosdfrac{alpha-eta}{2}-sindfrac{alpha+eta}{2} ight)
    &geqslant -2cdot left(dfrac{1}{2}sindfrac{alpha+eta}{2} ight)^2
    &geqslant -dfrac{1}{2}.
    end{split}

    [ 因此当$cosdfrac{alpha-eta}{2}=dfrac{1}{2}sindfrac{alpha+eta}{2}$且$sindfrac{alpha+eta}{2}=1$时,上述不等式取等.取$$(alpha,eta)= left(dfrac{5pi}{6},dfrac{pi}{6} ight).$$此时$overrightarrow{AB}cdotoverrightarrow{AC}$取得最小值$-dfrac{1}{2}$.]

  • 相关阅读:
    python值解析excel
    python 面向对象
    python之解析json
    python之数据驱动ddt
    Matlab笔记
    WPF应用Access数据库
    白平衡之灰度世界法与镜面法
    应用按位与操作,拆分字节
    WPF(C#)与MATLAB混合编程
    C++调用matlab函数
  • 原文地址:https://www.cnblogs.com/Math521/p/11871529.html
Copyright © 2011-2022 走看看