中国剩余定理的非互质形式
任意n个表达式一对对处理,故只需处理两个表达式。
x = a(mod m)
x = b(mod n)
km+a = b (mod n)
km = (a-b)(mod n)
利用扩展欧几里得算法求出k
k = k0(mod n/(n,m)) = k0 + h*n/(n,m)
x = km+a = k0*m+a+h*n*m/(n,m) = k0*m+a (mod n*m/(n,m))
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cstdlib> #include <utility> #include <vector> #include <queue> #include <map> #include <set> #define max(x,y) ((x)>(y)?(x):(y)) #define min(x,y) ((x)>(y)?(y):(x)) #define INF 0x3f3f3f3f #define LL long long using namespace std; LL m0, m1, a0, a1; LL Exgcd(LL a,LL b,LL &x,LL &y) // ax+by = (a,b) { if(b == 0) { x = 1; y = 0; return a; } LL x1,y1,x0,y0; x0=1; y0=0; x1=0; y1=1; x=0; y=1; LL r=a%b; LL q=(a-r)/b; while(r) { x=x0-q*x1; y=y0-q*y1; x0=x1; y0=y1; x1=x; y1=y; a=b; b=r; r=a%b; q=(a-r)/b; } return b; } int main() { int n; while(scanf("%d", &n) != EOF) { scanf("%lld%lld", &m0, &a0); bool flag = 0; while(--n) { scanf("%lld%lld", &m1, &a1); LL x, y, tmp; LL d = Exgcd(m0, m1, x, y); x = (x%(m1/d)+m1/d)%(m1/d); tmp = ((a1-a0)%m1+m1)%m1; if(tmp%d != 0) flag = 1; x = x*(tmp/d)%(m1/d); a0 = (x*m0+a0+m0/d*m1)%(m0/d*m1); m0 = m0/d*m1; } if(flag) printf("-1 "); else printf("%lld ", a0); } return 0; }