zoukankan      html  css  js  c++  java
  • 【BZOJ1296】粉刷匠(SCOI2009)-区间DP+资源分配型DP

    测试地址:粉刷匠
    做法:本题需要用到动态规划。
    注意到,粉刷不能多于T次,就等同于将这些粉刷次数分配到每一条木板上,使得涂对的格子数最大,那么很容易写出状态转移方程:
    f(i,j)表示前i条木板使用j次粉刷次数的情况下,能涂对的最大的格子数,g(i,j,k)表示第i条木板上用j次粉刷次数涂前k个格子,能涂对的最大的格子数,那么状态转移方程为:
    f(i,j)=max{f(i1,jk)+g(i,k,m)|0kj}
    那么g(i,k,m)要怎么求呢?因为每个格子最多被涂一次,所以可以看出,对于每条木板,可以做一个区间DP来求出g(i,j,k)的值,状态转移方程如下:
    g(i,j,k)=max{g(i,j1,l)+max([l,k],[l,k])|j1lk1}
    如果暴力计算一个区间中某种颜色的块数,那么这个方程是O(nm4)的,未免太大。注意到颜色只有两种,所以我们只需用前缀和预处理出[1,k]内的红色块数,然后我们就可以随时O(1)得到一个区间内红色的块数和蓝色的块数,那么方程优化到O(nm3),再加上O(nmT)的求f,就可以通过此题了。最后的答案是max{f(n,i)}
    以下是本人代码:

    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    int n,m,t;
    int sum[55][55],f[55][2510]={0},g[55][2510][55]={0};
    char s[110];
    
    int main()
    {
        scanf("%d%d%d",&n,&m,&t);
        for(int i=1;i<=n;i++)
        {
            scanf("%s",s);
            sum[i][0]=0;
            for(int j=1;j<=m;j++)
            {
                if (s[j-1]=='1') sum[i][j]=sum[i][j-1]+1;
                else sum[i][j]=sum[i][j-1];
            }
        }
    
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                for(int k=1;k<=m;k++)
                    for(int l=j-1;l<k;l++)
                        g[i][j][k]=max(g[i][j][k],g[i][j-1][l]+max(sum[i][k]-sum[i][l],k-l-sum[i][k]+sum[i][l]));
        for(int i=1;i<=n;i++)
            for(int j=1;j<=t;j++)
                for(int k=0;k<=min(j,m);k++)
                    f[i][j]=max(f[i][j],f[i-1][j-k]+g[i][k][m]);
        int ans=0;
        for(int i=1;i<=t;i++) ans=max(ans,f[n][i]);
        printf("%d",ans);
    
        return 0;
    }
    
  • 相关阅读:
    Path类
    C#集合
    阿里巴巴2013年实习生笔试题B
    阿里巴巴2013年实习生笔试题A
    腾讯2014年校园招聘笔试试题
    腾讯技术类校园招聘笔试试题
    腾讯2013年实习生笔试题
    腾讯2012年实习生笔试题
    hdu1505
    hdu1506
  • 原文地址:https://www.cnblogs.com/Maxwei-wzj/p/9793595.html
Copyright © 2011-2022 走看看