题目大意:给定一个序列$s$,每个人每轮可以从两端(任选一端)取任意个数的整数,不能不取。在两个人都足够聪明的情况下,求先手的最大得分。
题解:设$f_{i,j}$表示剩下$[i,j]$,先手的最大得分。令$sum_{i,j}=sumlimits_{k=i}^j s_k$
$$ herefore f_{i,j}=sum_{i,j}-min{minlimits_{k=j-1}^i f_{i,k},minlimits_{k=i+1}^j f_{k,j},0}$$
这是$O(n^3)$的,会$TLE$
$$令l_{i,j}=minlimits_{k=i}^j f_{i,k}, r_{i,j}=minlimits_{k=i}^j f_{k,j}$$
$$f_{i,j}=sum_{i,j}-min{l_{i,j-1},r_{i+1,j},0}$$
时间复杂度:$O(n^2)$
卡点:无
C++ Code:
#include <cstdio> #include <cstring> #define maxn 1010 using namespace std; int Tim, n; int s[maxn], sum[maxn], f[maxn][maxn]; int l[maxn][maxn], r[maxn][maxn]; inline int min(int a, int b) {return a < b ? a : b;} inline int max(int a, int b) {return a > b ? a : b;} int main() { scanf("%d", &Tim); while (Tim --> 0) { memset(l, 0x3f, sizeof l); memset(r, 0x3f, sizeof r); scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &s[i]); sum[i] = sum[i - 1] + s[i]; } for(int i = 1; i <= n; i++) { for(int j = i; j; j--) { int &t = f[j][i], tmp; t = sum[i] - sum[j - 1]; tmp = min(l[j][i - 1], r[j + 1][i]); t = max(t, t - tmp); if(j == i) l[j][i] = r[j][i] = t; else { l[j][i] = min(l[j][i - 1], t); r[j][i] = min(r[j + 1][i], t); } } } printf("%d ", f[1][n]); } return 0; }