题目大意:给你$n$个数$q_i$,令$F_j=sumlimits_{i<j}dfrac{q_iq_j}{(i−j)^2}−sumlimits_{i>j}dfrac{q_iq_j}{(i−j)^2}$,令$E_i=dfrac{F_i}{q_i}$。求$E_i$
题解:
$$
E_j=sumlimits_{i=1}^{j-1}dfrac{q_i}{(i−j)^2}−sumlimits_{i=j+1}^ndfrac{q_i}{(i−j)^2}\
令x_j=sumlimits_{i=1}^{j-1}dfrac{q_i}{(i-j)^2},y_j=sumlimits_{i=j+1}^ndfrac{q_i}{(i−j)^2}\
E_i=x_i-y_i\
令f_i=i^{-2}\
x=f*q,y^R=f*q^R\
FFT即可
$$
卡点:无
C++ Code:
#include <cstdio> #include <algorithm> #include <cmath> #define maxn 262144 const double Pi = acos(-1); struct complex { double r, i; inline complex(double __r = 0, double __i = 0) {r = __r, i = __i;} inline complex operator + (const complex &rhs) const {return (complex) {r + rhs.r, i + rhs.i};} inline complex operator - (const complex &rhs) const {return (complex) {r - rhs.r, i - rhs.i};} inline complex operator * (const complex &rhs) const {return (complex) {r * rhs.r - i * rhs.i, r * rhs.i + i * rhs.r};} inline complex operator / (const int &x) const {return (complex) {r / x, i / x};} } q[maxn], qR[maxn], a[maxn], A[maxn], B[maxn]; int lim, rev[maxn], s; inline void init(int n) { lim = 1, s = -1; while (lim < n) lim <<= 1, s++; for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s; } inline void FFT(complex *A, int op = 1) { for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]); for (int mid = 1; mid < lim; mid <<= 1) { complex Wn(cos(Pi / mid), op * sin(Pi / mid)); for (int i = 0; i < lim; i += mid << 1) { complex W(1, 0); for (int j = 0; j < mid; j++, W = W * Wn) { complex X = A[i + j], Y = A[i + j + mid] * W; A[i + j] = X + Y, A[i + j + mid] = X - Y; } } } if (op == -1) for (int i = 0; i < lim; i++) A[i] = A[i] / lim; } int n; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%lf", &q[i].r); qR[n - i - 1].r = q[i].r; if (i) a[i].r = 1.0 / i / i; } init(n << 1); FFT(q), FFT(qR), FFT(a); for (int i = 0; i < lim; i++) A[i] = q[i] * a[i], B[i] = qR[i] * a[i]; FFT(A, -1), FFT(B, -1); for (int i = 0; i < n; i++) printf("%.3lf ", A[i].r - B[n - i - 1].r); return 0; }