zoukankan      html  css  js  c++  java
  • [CF107D]Crime Management

    题目大意:有一种长度为$n(nleqslant 10^{18})$的字符串,给定$m(mleqslant10^3)$种限制,即字符$c$出现的次数为$cnt$,若一个字符有多种限制,则满足任意一个即可,求这种字符串有多少个,所有的$cnt$相乘小于等于 123,答案对 12345 取模。

    题解:最多$6$个限制的$cnt ot=2$,状态只需要记录这些不为$1$的限制,可以把每个限制出现次数压成一个数,构建矩阵,快速幂即可

    卡点:

    C++ Code:

    #include <cstdio>
    #include <vector>
    #define maxn 1010
    const int mod = 12345;
    inline int min(int a, int b) {return a < b ? a : b;}
    inline int max(int a, int b) {return a > b ? a : b;}
    inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
    inline long long pw(long long base, long long p) {
    	base %= mod;
    	long long res = 1;
    	for (; p; p >>= 1, base = base * base % mod) if (p & 1) res = res * base % mod;
    	return res;
    }
    
    int __sz = 1;
    struct matrix {
    	#define __M 150
    	#define M __sz
    	int s[__M][__M];
    	inline matrix() {
    		__builtin_memset(s, 0, sizeof s);
    	}
    	inline friend matrix operator * (const matrix &lhs, const matrix &rhs) {
    		matrix res;
    		for (register int i = 0; i < M; i++) {
    			for (register int j = 0; j < M; j++) {
    				long long tmp = 0;
    				for (register int k = 0; k < M; k++) tmp += static_cast<long long> (lhs.s[i][k]) * rhs.s[k][j];
    				res.s[i][j] = tmp % mod;
    			}
    		}
    		return res;
    	}
    	#undef __M
    	#undef M
    } BASE, RES;
    
    long long n;
    int m;
    int mp[300], ret[300], __name, prod[300];
    int base[300];
    std::vector<int> v[300];
    inline int get(int x, int i) {return x / base[i - 1] % prod[i];}
    inline bool check(int x) {
    	for (int i = 1; i <= __name; i++) {
    		bool find = false;
    		int now = get(x, i);
    		for (std::vector<int>::iterator it = v[i].begin(); it != v[i].end(); it++) if (now % *it == 0) {
    			find = true;
    			break;
    		}
    		if (!find) return false;
    	}
    	return true;
    }
    
    int main() {
    	scanf("%lld%d", &n, &m);
    	for (int i = 1, x, ch; i <= m; i++) {
    		char __ch;
    		scanf("%1s%d", &__ch, &x); ch = static_cast<int>(__ch);
    		if (!mp[ch]) mp[ch] = ++__name, ret[__name] = ch, prod[__name] = 1;
    		prod[mp[ch]] *= x;
    		v[mp[ch]].push_back(x);
    		__sz *= x;
    	}
    	base[0] = 1; for (int i = 1; i <= __name; i++) base[i] = base[i - 1] * prod[i];
    	for (int i = 0; i < __sz; i++) {
    		for (int j = 1; j <= __name; j++) {
    			int now = get(i, j), nxt = (now + 1) % prod[j];
    			up(BASE.s[i][i + (nxt - now) * base[j - 1]], 1);
    		}
    	}
    	RES.s[0][0] = 1;
    	for (; n; n >>= 1, BASE = BASE * BASE) if (n & 1) RES = RES * BASE;
    	int ans = 0;
    	for (int i = 0; i < __sz; i++) if (check(i)) up(ans, RES.s[0][i]);
    	printf("%d
    ", ans);
    	return 0;
    } 
    

      

  • 相关阅读:
    2019年主机游戏将走下坡路
    关于敏捷开发的26个心得
    CSS3弹性布局内容对齐(justify-content)属性使用具体解释
    (cLion、RubyMine、PyCharm、WebStorm、PhpStorm、Appcode、Clion、Idea) 万能破解,获取自己的注冊码
    hdoj-1212-Big Number【大数取余&amp;简单题】
    gitlab https
    gitlab smtp设置
    GitLab: API is not accessibl
    Could not find modernizr-2.6.2 in any of the sources GitLab: API is not accessible
    gitlab
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/9895604.html
Copyright © 2011-2022 走看看