题目大意:$NOIP2018;TG;D1T3$
题解:题目要求最短的赛道的长度最大,可以想达到二分答案,接着就是一个显然的树形$DP$。
发现对于一个点,它子树中若有两条链接起来比要求的答案大,一定接起来成为一条路径,因为接起来答案一定加一,而传递上去的话不一定。然后对于一条链,一定是找可行的最短的链与它相接,把尽可能长的链传递上去。找最小的可行的链我使用了双向链表(复杂度$O(n)$,右端点总共最多向左移动$n$次,每次最多向右移动$1$次)
卡点:考场上写结束后删除节点后转移到下一个节点时,没有考虑到移动到的节点也被删除的情况(考场上我是真的傻)
C++ Code:
#include <cstdio> #include <algorithm> #include <vector> #include <cctype> namespace R { int x, ch; inline int read() { ch = getchar(); while (isspace(ch)) ch = getchar(); for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15); return x; } } using R::read; #define maxn 50010 const int TANG_Yx = 20040826; inline int max(int a, int b) {return a > b ? a : b;} int head[maxn], cnt; struct Edge { int to, nxt, w; } e[maxn << 1]; inline void add(int a, int b, int c) { e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt; } int n, m, sum, ans; int k, f[maxn]; inline bool debug(int k) {return true;} int pre[maxn], nxt[maxn]; std::vector<int> V[maxn]; int dfn[maxn], rnk[maxn], idx, fa[maxn]; int up[maxn]; void dfs1(int u, int fa = 0) { ::fa[u] = fa; rnk[u] = u; dfn[u] = ++idx; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v != fa) { up[v] = e[i].w; dfs1(v, u); } } } inline void work(int u, int fa) { std::vector<int> &V = ::V[u]; std::sort(V.begin(), V.end()); int sz = V.size(); while (sz && V[sz - 1] >= k) f[u]++, sz--; int l = 0, r = 1, rem = 0; if (sz > 0) { #define End sz #define Begin (sz + 1) for (register int i = 0; i < sz; i++) { pre[i] = i - 1; nxt[i] = i + 1; } nxt[Begin] = 0; pre[0] = Begin; nxt[sz - 1] = End; pre[End] = sz - 1; while (r < End && l < r) { while (nxt[r] < End && V[l] + V[r] < k) r = nxt[r]; while (pre[r] > l && pre[r] != Begin && V[l] + V[pre[r]] >= k) r = pre[r]; if (V[l] + V[r] >= k) { f[u]++; nxt[pre[l]] = nxt[l]; pre[nxt[l]] = pre[l]; nxt[pre[r]] = nxt[r]; pre[nxt[r]] = pre[r]; if (nxt[pre[l]] != End && pre[nxt[r]] != Begin && pre[nxt[r]] > nxt[pre[l]]) r = pre[nxt[r]]; else r = nxt[r]; l = nxt[pre[l]]; } else l = nxt[l]; if (l == r) r = nxt[r]; } if (0 <= pre[End] && pre[End] < sz) rem = V[pre[End]]; else rem = 0; #undef End #undef Begin } if (u != 1) { ::V[fa].push_back(rem + up[u]); f[fa] += f[u]; } } inline bool check(int mid) { k = mid; for (register int i = 1; i <= n; i++) V[i].clear(), f[i] = 0; for (register int I = 1, i = rnk[I]; I <= n; i = rnk[++I]) { work(i, fa[i]); } return f[1] >= m; } namespace Work1 { int MAX, ans; void dfs(int u, int fa = 0, int dep = 0) { if (dep > MAX) { MAX = dep; ans = u; } for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v != fa) { dfs(v, u, dep + e[i].w); } } } int main() { MAX = 0; dfs(1); int x = ans; MAX = 0; dfs(x); printf("%d ", MAX); return 0; } } namespace Work2 { int pre[maxn]; void dfs(int u, int fa = 0) { for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v != fa) { pre[v] = pre[u] + e[i].w; dfs(v, u); } } } bool check(int mid) { int last = 0, res = 0; for (int i = 1; i <= n; i++) { if (pre[i] - last >= mid) { last = pre[i]; res++; } } return res >= m; } int main() { dfs(1); int l = 1, r = sum / m, ans = 0; while (l <= r) { int mid = l + r >> 1; if (check(mid)) { l = mid + 1; ans = mid; } else r = mid - 1; } printf("%d ", ans); return 0; } } inline bool cmp(int a, int b) {return dfn[a] > dfn[b];} bool flag = true; int main() { n = read(), m = read(); for (int i = 1, a, b, c; i < n; i++) { a = read(), b = read(), c = read(); add(a, b, c); add(b, a, c); if (a - b != 1 && b - a != 1) flag = false; sum += c; } if (m == 1) { return Work1::main(); } if (flag) { return Work2::main(); } dfs1(1); std::sort(rnk + 1, rnk + n + 1, cmp); int l = 1, r = sum / m; while (l <= r) { int mid = l + r >> 1; if (check(mid)) { l = mid + 1; ans = mid; } else r = mid - 1; } printf("%d ", ans); return 0; }