zoukankan      html  css  js  c++  java
  • HDU-4417 Super Mario

    Super Mario

    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory. Now the poor princess is in trouble again and Mario needs to save his lover. We regard the road to the boss’s castle as a line (the length is n), on every integer point i there is a brick on height hi. Now the question is how many bricks in [L, R] Mario can hit if the maximal height he can jump is H.

    InputThe first line follows an integer T, the number of test data. 
    For each test data: 
    The first line contains two integers n, m (1 <= n <=10^5, 1 <= m <= 10^5), n is the length of the road, m is the number of queries. 
    Next line contains n integers, the height of each brick, the range is [0, 1000000000]. 
    Next m lines, each line contains three integers L, R,H.( 0 <= L <= R < n 0 <= H <= 1000000000.)OutputFor each case, output "Case X: " (X is the case number starting from 1) followed by m lines, each line contains an integer. The ith integer is the number of bricks Mario can hit for the ith query. 
    Sample Input

    1
    10 10
    0 5 2 7 5 4 3 8 7 7 
    2 8 6
    3 5 0
    1 3 1
    1 9 4
    0 1 0
    3 5 5
    5 5 1
    4 6 3
    1 5 7
    5 7 3

    Sample Output

    Case 1:
    4
    0
    0
    3
    1
    2
    0
    1
    5
    1

     题意:求区间[l-r]的<=k的个数

    裸的主席树,离散化一下就行了。

    #include<bits/stdc++.h>
    using namespace std;
    #define Debug(x) cout<<#x<<":"<<(x)<<endl
    typedef long long ll;
    const int maxn = 100000+5;
    struct node
    {
        int l,r,num;
    }tree[maxn*20];
    int a[maxn],b[maxn],rt[maxn],cnt;
    void pushup(int k)
    {
        tree[k].num=tree[tree[k].l].num+tree[tree[k].r].num;
    }
    void build(int l,int r,int &x)
    {
        x=++cnt;
        tree[x].num=0;
        if(l==r) return ;
        int m=(l+r)>>1;
        build(l,m,tree[x].l);
        build(m+1,r,tree[x].r);
        pushup(x);
    }
    int query(int l,int r,int pre,int now,int x,int y)
    {
        if(x<=l&&r<=y) return tree[now].num-tree[pre].num;
        int m=(l+r)>>1;
        int ans=0;
        if(x<=m) ans+=query(l,m,tree[pre].l,tree[now].l,x,y);
        if(y>m) ans+=query(m+1,r,tree[pre].r,tree[now].r,x,y);
        return ans;
    }
    void updata(int l,int r,int pre,int &now,int k)
    {
        now=++cnt;
        tree[now]=tree[pre];
        if(l==r)
        {
            tree[now].num++;
            return ;
        }
        int m=(l+r)>>1;
        if(k<=m) updata(l,m,tree[pre].l,tree[now].l,k);
        else updata(m+1,r,tree[pre].r,tree[now].r,k);
        pushup(now);
    }
    int main()
    {
        int n,m,t,p=1;
        scanf("%d",&t);
        while(t--)
        {
            printf("Case %d:
    ",p++);
            scanf("%d %d",&n,&m);
            {
                cnt=0;
                for(int i=1; i<=n; i++)
                    scanf("%d",&a[i]),b[i]=a[i];
                sort(b+1,b+1+n);
                int len=unique(b+1,b+1+n)-(b+1);
                for(int i=1; i<=n; i++)
                    a[i]=lower_bound(b+1,b+1+len,a[i])-b;
                build(1,len,rt[0]);
                for(int i=1; i<=n; i++)
                    updata(1,len,rt[i-1],rt[i],a[i]);
                while(m--)
                {
                    int l,r,k1,k;
                    scanf("%d %d %d",&l,&r,&k);
                    l++;
                    r++;
                    k1=lower_bound(b+1,b+1+len,k)-b;
                    if(b[k1]!=k) k1--;
                    if(k1==0)//不判断会出现MLE 
                    {
                        printf("0
    ");
                        continue;
                    }
                    printf("%d
    ",query(1,len,rt[l-1],rt[r],1,k1));
                }
            }
        }
    }

    PS:摸鱼怪的博客分享,欢迎感谢各路大牛的指点~

  • 相关阅读:
    Ubuntu18.04, WPS表格生成中文大写数字的script
    Java实现的简单神经网络(基于Sigmoid激活函数)
    Naive Bayes Classifier 朴素贝叶斯分类器
    动态规划处理diff算法 Myers Diff (正向)
    动态规划处理01背包问题
    文本diff算法Patience Diff
    API返回错误信息的最佳实践
    CAP理论中, P(partition tolerance, 分区容错性)的合理解释
    mysql: SELECT ... FOR UPDATE 对SELECT语句的阻塞实验
    Probability&Statistics 概率论与数理统计(1)
  • 原文地址:https://www.cnblogs.com/MengX/p/9104963.html
Copyright © 2011-2022 走看看