zoukankan      html  css  js  c++  java
  • Our Journey of Dalian Ends 最小费用最大流

    链接:https://nanti.jisuanke.com/t/16959

    题意:从大连出发,经途经上海,然后最终到达西安,每个地方只能经过一次,然后给出一些无向有权变,求最短的距离。

    题解:最小费用最大流,要抽象出模型来。因为每个地方只能经过一次,因此要拆点,将每个地方作为一个点,将这个点拆成入点和出点(详见如图的反例),然后连边。从上海出发连边,容量是1,每条边的花费就是这条边的权值,出点和入点之间的边的花费为0。建立超级汇点T,从西安和大连分别连向汇点容量为1的边,花费为0。原来点的序号为(1----n),拆后点的序号为(1+n-----n+n);

    详见代码:(会被队友嫌弃的板子)

    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    #include <string.h>
    #include <vector>
    #include <queue>
    #include <map>
    #include <stack>
    #include <iostream>
    #define pi acos(-1.0)
    #define INF 0x3f3f3f3f
    using namespace std;
    #define ll long long
    const double INFINITE= 1e18;
    #define MAX_NODE 10010
    #define MAX_EDGE_NUM 400005
    struct Edge{
    
        ll to;
    
        ll vol;
    
        ll cost;
    
        ll next;
    
    };
    
    Edge gEdges[MAX_EDGE_NUM];
    
    ll gHead[MAX_NODE];
    
    ll gPre[MAX_NODE];
    
    ll gPath[MAX_NODE];
    
    ll gDist[MAX_NODE];
    
    ll gEdgeCount;
    void init()
    {
        memset(gHead,-1,sizeof gHead);
        gEdgeCount=0;
    }
    void InsertEdge(ll u, ll v, ll vol, ll cost){
    
        gEdges[gEdgeCount].to = v;
    
        gEdges[gEdgeCount].vol = vol;
    
        gEdges[gEdgeCount].cost = cost;
    
        gEdges[gEdgeCount].next = gHead[u];
    
        gHead[u] = gEdgeCount++;
    
    
    
        gEdges[gEdgeCount].to = u;
    
        gEdges[gEdgeCount].vol = 0;         //vol为0,表示开始时候,该边的反向不通
    
        gEdges[gEdgeCount].cost = -cost;    //cost 为正向边的cost相反数,这是为了
    
        gEdges[gEdgeCount].next = gHead[v];
    
        gHead[v] = gEdgeCount++;
    
    }
    //假设图中不存在负权和环,SPFA算法找到最短路径/从源点s到终点t所经过边的cost之和最小的路径
    
    bool Spfa(ll s, ll t){
        memset(gPre, -1, sizeof(gPre));
        memset(gDist, 0x7F, sizeof(gDist));
        gDist[s] = 0;
        queue<ll> Q;
        Q.push(s);
        while (!Q.empty()){//由于不存在负权和环,因此一定会结束
    
            ll u = Q.front();
            Q.pop();
            for (ll e = gHead[u]; e != -1; e = gEdges[e].next){
                ll v = gEdges[e].to;
                if (gEdges[e].vol > 0 && gDist[u] + gEdges[e].cost < gDist[v]){
                    gDist[v] = gDist[u] + gEdges[e].cost;
                    gPre[v] = u; //前一个点
                    gPath[v] = e;//该点连接的前一个边
                    Q.push(v);
                }
            }
        }
        if (gPre[t] == -1)  //若终点t没有设置pre,说明不存在到达终点t的路径
    
            return false;
    
        return true;
    
    }
    ll MinCostFlow(ll s, ll t){
    
        ll cost = 0;
    
        ll flow = 0;
    
        while (Spfa(s, t)){
            ll f = INFINITE;
    
            for (ll u = t; u != s; u = gPre[u]){
    
                if (gEdges[gPath[u]].vol < f)
    
                    f = gEdges[gPath[u]].vol;
    
            }
    
            flow += f;
            cost += gDist[t];
            //printf("cost %d
    ",cost);
            for (ll u = t; u != s; u = gPre[u]){
                gEdges[gPath[u]].vol -= f;   //正向边容量减少
                gEdges[gPath[u]^1].vol += f; //反向边容量增加
            }
        }
        if(flow!=2) return -1;
        return cost;
    
    }
    map<string,ll> jl;
    int u[MAX_NODE],v[MAX_NODE],w[MAX_NODE];
    int  main()
    {
        //freopen("C:\Users\Administrator\Desktop\a.txt","r",stdin);
        ios::sync_with_stdio(false);
        //freopen("C:\Users\Administrator\Desktop\b.txt","w",stdout);
        ll T,n,m;
        cin>>T;
        while(T--)
        {
            m=3;
            cin>>n;
            init();
            jl.clear();
            string c1="Shanghai",c2="Xian",c3="Dalian";
            jl[c1]=1,jl[c2]=2,jl[c3]=3;
            for(int i=0;i<n;i++)
            {
                string c1,c2;
                int tp1,tp2;
                ll a;
                cin>>c1>>c2>>a;
                if(jl[c1]) tp1=jl[c1];
                else jl[c1]=++m;
                if(jl[c2]) tp2=jl[c2];
                else jl[c2]=++m;
                tp1=jl[c1],tp2=jl[c2]; //先将边存储起来
                u[i]=tp1,v[i]=tp2,w[i]=a;
            }
            int T=2*m+1;
            for(int i=0;i<n;i++)
                if(u[i]==1) InsertEdge(u[i],v[i],1,w[i]);
                else if(v[i]==1) InsertEdge(v[i],u[i],1,w[i]);
                else InsertEdge(u[i]+m,v[i],1,w[i]),InsertEdge(v[i]+m,u[i],1,w[i]);
            for(int i=2;i<=m;i++) InsertEdge(i,i+m,1,0);//拆点之后的出点和入点
            InsertEdge(2+m,T,1,0);InsertEdge(3+m,T,1,0);//大连和西安连向汇点
            ll ans=MinCostFlow(1,T);
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    MicroPython实例之TPYBoard v102炫彩跑马灯WS2812B
    MicroPython实例之TPYBoardv102自动浇花系统
    Micropython实例之DIY超声波避障小车
    MicroPython支持图形化编辑了:Python Editor带你轻松玩转MicroPython
    潍坊首个小学“教育创客空间”落户呼家庄小学 萝卜(创客)教育走进小学课堂
    Micropython TPYBoard I2C的用法
    JDK5.0新特性-反射
    JDK5.0新特性-枚举
    JDK5.0新特性-泛型
    JDK5.0新特性-静态导入
  • 原文地址:https://www.cnblogs.com/MeowMeowMeow/p/7592887.html
Copyright © 2011-2022 走看看