/* DES, TripleDES and BlowFish in Silverlight */ namespace BroccoliProducts { using System; using System.Collections.Generic; #if DEBUG using System.Diagnostics; #endif // #if DEBUG using System.Linq; using System.Text; using System.IO; using System.Security.Cryptography; /// <summary> /// Declaration of DESCrytography class /// </summary> public static class DESCrytography { ///////////////////////////////////////////////////////////// // Nested classes /// <summary> /// Declaration of BLOCK8BYTE class /// </summary> internal class BLOCK8BYTE { ///////////////////////////////////////////////////////// // Constants public const int BYTE_LENGTH = 8; ///////////////////////////////////////////////////////// // Attributes internal byte[] m_data = new byte[BYTE_LENGTH]; ///////////////////////////////////////////////////////// // Operations public void Reset() { // Reset bytes Array.Clear(m_data, 0, BYTE_LENGTH); } public void Set(BLOCK8BYTE Source) { // Copy source data to this this.Set(Source.m_data,0); } public void Set(byte[] buffer, int iOffset) { // Set contents by copying array Array.Copy(buffer, iOffset, m_data, 0, BYTE_LENGTH); } public void Xor(BLOCK8BYTE A, BLOCK8BYTE B) { // Set byte to A ^ B for (int iOffset = 0; iOffset < BYTE_LENGTH; iOffset++) m_data[iOffset] = Convert.ToByte( A.m_data[iOffset] ^ B.m_data[iOffset] ); } public void SetBit(int iByteOffset, int iBitOffset, bool bFlag) { // Compose mask byte mask = Convert.ToByte(1 << iBitOffset); if (((m_data[iByteOffset] & mask) == mask) != bFlag) m_data[iByteOffset] ^= mask; } public bool GetBit(int iByteOffset, int iBitOffset) { // call sibling function return ((this.m_data[iByteOffset] >> iBitOffset) & 0x01) == 0x01; } public void ShiftLeftWrapped( BLOCK8BYTE S, int iBitShift ) { // this shift is only applied to the first 32 bits, and parity bit is ignored // Declaration of local variables int iByteOffset = 0; bool bBit = false; // Copy byte and shift regardless for (iByteOffset = 0; iByteOffset < 4; iByteOffset++) m_data[iByteOffset] = Convert.ToByte((S.m_data[iByteOffset] << iBitShift) & 0xFF); // if shifting by 1... if (iBitShift == 1) { // repair bits on right of BYTE for (iByteOffset = 0; iByteOffset < 3; iByteOffset++) { // get repairing bit offsets bBit = S.GetBit( iByteOffset + 1, 7 ); this.SetBit(iByteOffset, 1, bBit); } // wrap around the final bit this.SetBit(3,1,S.GetBit(0,7)); } else if (iBitShift == 2) { // repair bits on right of BYTE for (iByteOffset = 0; iByteOffset < 3; iByteOffset++) { // get repairing bit offsets bBit = S.GetBit(iByteOffset + 1, 7); this.SetBit(iByteOffset, 2, bBit); bBit = S.GetBit(iByteOffset + 1, 6); this.SetBit(iByteOffset, 1, bBit); } // wrap around the final bit this.SetBit(3, 2, S.GetBit(0, 7)); this.SetBit(3, 1, S.GetBit(0, 6)); } #if DEBUG else Debug.Assert(false); #endif // #if DEBUG } } /// <summary> /// Declaration of KEY_SET class /// </summary> internal class KEY_SET { ///////////////////////////////////////////////////////// // Constants public const int KEY_COUNT = 17; ///////////////////////////////////////////////////////// // Attributes internal BLOCK8BYTE[] m_array; ///////////////////////////////////////////////////////// // Construction internal KEY_SET() { // Create array m_array = new BLOCK8BYTE[KEY_COUNT]; for (int i1 = 0; i1 < KEY_COUNT; i1++) m_array[i1] = new BLOCK8BYTE(); } ///////////////////////////////////////////////////////// // Operations public BLOCK8BYTE GetAt(int iArrayOffset) { return m_array[iArrayOffset]; } } /// <summary> /// Declaration of WORKING_SET class /// </summary> internal class WORKING_SET { ///////////////////////////////////////////////////////// // Attributes internal BLOCK8BYTE IP = new BLOCK8BYTE(); internal BLOCK8BYTE[] Ln = new BLOCK8BYTE[17]; internal BLOCK8BYTE[] Rn = new BLOCK8BYTE[17]; internal BLOCK8BYTE RnExpand = new BLOCK8BYTE(); internal BLOCK8BYTE XorBlock = new BLOCK8BYTE(); internal BLOCK8BYTE SBoxValues = new BLOCK8BYTE(); internal BLOCK8BYTE f = new BLOCK8BYTE(); internal BLOCK8BYTE X = new BLOCK8BYTE(); internal BLOCK8BYTE DataBlockIn = new BLOCK8BYTE(); internal BLOCK8BYTE DataBlockOut = new BLOCK8BYTE(); internal BLOCK8BYTE DecryptXorBlock = new BLOCK8BYTE(); ///////////////////////////////////////////////////////// // Construction internal WORKING_SET() { // Build the arrays for (int i1 = 0; i1 < 17; i1++) { Ln[i1] = new BLOCK8BYTE(); Rn[i1] = new BLOCK8BYTE(); } } ///////////////////////////////////////////////////////// // Operations internal void Scrub() { // Scrub data IP.Reset(); for (int i1 = 0; i1 < 17; i1++) { Ln[i1].Reset(); Rn[i1].Reset(); } RnExpand.Reset(); XorBlock.Reset(); SBoxValues.Reset(); f.Reset(); X.Reset(); DataBlockIn.Reset(); DataBlockOut.Reset(); DecryptXorBlock.Reset(); } } ///////////////////////////////////////////////////////////// // Constants public const int KEY_BYTE_LENGTH = 8; public const int BITS_PER_BYTE = 8; ///////////////////////////////////////////////////////////// #region DES Tables /* PERMUTED CHOICE 1 (PCl) */ private static byte[] bytePC1 = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4, }; /* PERMUTED CHOICE 2 (PC2) */ private static byte[] bytePC2 = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32, }; /* INITIAL PERMUTATION (IP) */ private static byte[] byteIP = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; /* REVERSE FINAL PERMUTATION (IP-1) */ private static byte[] byteRFP = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25, }; /* E BIT-SELECTION TABLE */ private static byte[] byteE = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; /* PERMUTATION FUNCTION P */ private static byte[] byteP = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; // Schedule of left shifts for C and D blocks private static byte[] byteShifts = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; // S-Boxes private static byte[,] byteSBox = new byte[,] { {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}, {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}, {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}, {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5}, {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15}, {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}, {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}, {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}, {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}, {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}, {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}, {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}, {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}, {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}, {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}, {4, 2, 1, 11, 10, 13, 7, 8,15, 9, 12, 5, 6, 3, 0, 14}, {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}, {12, 1, 10, 15, 9, 2, 6, 8,0, 13, 3, 4, 14, 7, 5, 11}, {10, 15, 4, 2, 7, 12, 9, 5,6, 1, 13, 14, 0, 11, 3, 8}, {9, 14, 15, 5, 2, 8, 12, 3,7, 0, 4, 10, 1, 13, 11, 6}, {4, 3, 2, 12, 9, 5, 15, 10,11, 14, 1, 7, 6, 0, 8, 13}, {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}, {13, 0, 11, 7, 4, 9, 1, 10,14, 3, 5, 12, 2, 15, 8, 6}, {1, 4, 11, 13, 12, 3, 7, 14,10, 15, 6, 8, 0, 5, 9, 2}, {6, 11, 13, 8, 1, 4, 10, 7,9, 5, 0, 15, 14, 2, 3, 12}, {13, 2, 8, 4, 6, 15, 11, 1,10, 9, 3, 14, 5, 0, 12, 7}, {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}, {7, 11, 4, 1, 9, 12, 14, 2,0, 6, 10, 13, 15, 3, 5, 8}, {2, 1, 14, 7, 4, 10, 8, 13,15, 12, 9, 0, 3, 5, 6, 11} }; #endregion DES Tables ///////////////////////////////////////////////////////////// #region Static Operations - DES public static bool IsValidDESKey(byte[] Key) { // Shortcuts if (Key == null) return false; if (Key.Length != KEY_BYTE_LENGTH) return false; if (!IsStrongDESKey(Key)) return false; // Make sure end bits have odd parity for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++) { // Add bits for this byte int iTotalBits = 0; byte Mask = 1; for (int iBitOffset = 0; iBitOffset < BITS_PER_BYTE; iBitOffset++) { if ((Key[iByteOffset] & Mask) != 0) iTotalBits++; Mask <<= 1; } // If the total bits is not odd... if ((iTotalBits % 2) != 1) return false; } // Return success return true; } public static bool IsStrongDESKey(byte[] Key) { // Compare by large integer UInt64 uiKey = BitConverter.ToUInt64(Key,0); // Find weak keys... if( (uiKey == 0x0000000000000000) || (uiKey == 0x00000000FFFFFFFF) || (uiKey == 0xE0E0E0E0F1F1F1F1) || (uiKey == 0x1F1F1F1F0E0E0E0E) ) return false; // Find semi-weak keys... if( (uiKey == 0x011F011F010E010E) || (uiKey == 0x1F011F010E010E01) || (uiKey == 0x01E001E001F101F1) || (uiKey == 0xE001E001F101F101) || (uiKey == 0x01FE01FE01FE01FE) || (uiKey == 0xFE01FE01FE01FE01) || (uiKey == 0x1FE01FE00EF10EF1) || (uiKey == 0xE01FE01FF10EF10E) || (uiKey == 0x1FFE1FFE0EFE0EFE) || (uiKey == 0xFE1FFE1FFE0EFE0E) || (uiKey == 0xE0FEE0FEF1FEF1FE) || (uiKey == 0xFEE0FEE0FEF1FEF1) ) return false; // Return success return true; } public static byte[] CreateDesKey(Random rnd) { // Declare return variable byte[] Ftmp = new byte[KEY_BYTE_LENGTH]; // Fill with random data rnd.NextBytes(Ftmp); // Make the key good Ftmp = MakeGoodDesKey(Ftmp); #if DEBUG Debug.Assert(IsValidDESKey(Ftmp)); #endif // #if DEBUG // Call sibling function return Ftmp; } public static byte[] MakeGoodDesKey(byte[] KeyIn) { #if DEBUG Debug.Assert(KeyIn != null); Debug.Assert(KeyIn.Length == KEY_BYTE_LENGTH); #endif // #if DEBUG // Declare return variable byte[] Ftmp = new byte[KEY_BYTE_LENGTH]; // Loop until key is good int iInc = 0; while (true) { // Start with the key data Array.Copy(KeyIn, Ftmp, KEY_BYTE_LENGTH); // Add the increment _incKey(Ftmp, iInc); // Make sure end bits have odd parity _modifyKeyParity(Ftmp); // If key is valid... if (IsValidDESKey(Ftmp)) break; // Move on iInc++; } // while-loop // Return variable return Ftmp; } public static void DES(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt) { // Shortcuts if (!IsValidDESKey(Key)) throw new Exception("Invalid DES key."); // Create the output buffer _createBufferOut(bufferIn.Length, ref bufferOut, bEncrypt); // Expand the keys into Kn KEY_SET[] Kn = new KEY_SET[1] { _expandKey(Key, 0) }; // Apply DES keys _desAlgorithm(bufferIn, ref bufferOut, Kn, bEncrypt); // If decrypting... if (!bEncrypt) _removePadding(ref bufferOut); } #endregion Static Operations - DES ///////////////////////////////////////////////////////////// #region Static Operations - TripleDES public static bool IsValidTripleDESKey(byte[] Key) { // Shortcuts if (Key == null) return false; if (Key.Length != (3*KEY_BYTE_LENGTH)) return false; // Check each part of the key byte[] SubKey = new byte[KEY_BYTE_LENGTH]; for( int iKeyLoop=0; iKeyLoop<3; iKeyLoop++ ) { // Get sub-key Array.Copy( Key, iKeyLoop*8, SubKey, 0, KEY_BYTE_LENGTH ); // Check this DES key if(!IsValidDESKey(SubKey)) return false; } // Keys must not be equal bool bAEqualsB = true; bool bAEqualsC = true; bool bBEqualsC = true; for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++) { if (Key[iByteOffset] != Key[iByteOffset + KEY_BYTE_LENGTH]) bAEqualsB = false; if (Key[iByteOffset] != Key[iByteOffset + KEY_BYTE_LENGTH + KEY_BYTE_LENGTH]) bAEqualsC = false; if (Key[iByteOffset + KEY_BYTE_LENGTH] != Key[iByteOffset + KEY_BYTE_LENGTH + KEY_BYTE_LENGTH]) bBEqualsC = false; } if ((bAEqualsB) || (bAEqualsC) || (bBEqualsC)) return false; // Return success return true; } public static byte[] CreateTripleDesKey(Random rnd) { // Declare return variable byte[] Ftmp = new byte[KEY_BYTE_LENGTH * 3]; // Fill with random data rnd.NextBytes(Ftmp); // Make the key good Ftmp = MakeGoodTripleDesKey(Ftmp); // Check key is valid #if DEBUG Debug.Assert(IsValidTripleDESKey(Ftmp)); #endif // #if DEBUG // Call sibling function return Ftmp; } public static byte[] MakeGoodTripleDesKey(byte[] KeyIn) { // Declare return variable byte[] Ftmp = new byte[KEY_BYTE_LENGTH * 3]; // Declaration of local variables int iKey = 0; byte[] SubKey = new byte[KEY_BYTE_LENGTH]; // Loop through key modifications int iInc = 0; while (true) { // Start with the key Array.Copy(KeyIn, Ftmp, KEY_BYTE_LENGTH * 3); // Make sure each part of the key is valid for (iKey = 0; iKey < 3; iKey++) { // Get the sub-key Array.Copy(Ftmp, iKey * KEY_BYTE_LENGTH, SubKey, 0, KEY_BYTE_LENGTH); // Increment sub-key _incKey(SubKey, iInc * (iKey + 1)); // Make the parity valid _modifyKeyParity(SubKey); // Return to the Ftmp Array.Copy(SubKey, 0, Ftmp, iKey * KEY_BYTE_LENGTH, KEY_BYTE_LENGTH); } // Check the key if (IsValidTripleDESKey(Ftmp)) break; // Move on iInc++; } // while-loop // Return variable return Ftmp; } public static void TripleDES(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt) { // Shortcuts if (!IsValidTripleDESKey(Key)) throw new Exception("Invalid DES key."); // Create the output buffer _createBufferOut(bufferIn.Length, ref bufferOut, bEncrypt); // Expand the keys into Kn KEY_SET[] Kn = new KEY_SET[3] { _expandKey(Key, 0), _expandKey(Key, 8), _expandKey(Key, 16) }; // Apply DES keys _desAlgorithm(bufferIn, ref bufferOut, Kn, bEncrypt); // If decrypting... if (!bEncrypt) _removePadding(ref bufferOut); } #endregion Static Operations - TripleDES ///////////////////////////////////////////////////////////// #region Static Operations private static void _incKey(byte[] Key, int iInc) { #if DEBUG Debug.Assert(Key.Length == KEY_BYTE_LENGTH); #endif // #if DEBUG // shortcuts if (iInc == 0) return; // Add the increment int iCarry = iInc; for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++) { int iTemp = Key[iByteOffset] + iCarry; iCarry = iTemp >> 8; Key[iByteOffset] = Convert.ToByte(iTemp & 0xFF); if (iCarry == 0) break; } } private static void _modifyKeyParity(byte[] Key) { #if DEBUG Debug.Assert(Key.Length == KEY_BYTE_LENGTH); #endif // #if DEBUG // Make sure end bits have odd parity for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++) { // Add bits for this byte int iTotalBits = 0; byte Mask = 1; for (int iBitOffset = 0; iBitOffset < BITS_PER_BYTE; iBitOffset++) { if ((Key[iByteOffset] & Mask) != 0) iTotalBits++; Mask <<= 1; } // If the total bits is not odd... if ((iTotalBits % 2) != 1) { // Flip the first bit to retain odd parity Key[iByteOffset] ^= 0x01; } } } private static KEY_SET _expandKey(byte[] Key, int iOffset) { // // Expand an 8 byte DES key into a set of permuted keys // // Declare return variable KEY_SET Ftmp = new KEY_SET(); // Declaration of local variables int iTableOffset, iArrayOffset, iPermOffset, iByteOffset, iBitOffset; bool bBit; // Put key into an 8-bit block BLOCK8BYTE K = new BLOCK8BYTE(); K.Set(Key, iOffset); // Permutate Kp with PC1 BLOCK8BYTE Kp = new BLOCK8BYTE(); for (iArrayOffset = 0; iArrayOffset < bytePC1.Length; iArrayOffset++) { // Get permute offset iPermOffset = bytePC1[iArrayOffset]; iPermOffset--; // Get and set bit Kp.SetBit( _bitAddressToByteOffset(iArrayOffset, 7), _bitAddressToBitOffset(iArrayOffset, 7), K.GetBit( _bitAddressToByteOffset(iPermOffset, 8), _bitAddressToBitOffset(iPermOffset, 8) ) ); } // Create 17 blocks of C and D from Kp BLOCK8BYTE[] KpCn = new BLOCK8BYTE[17]; BLOCK8BYTE[] KpDn = new BLOCK8BYTE[17]; for (iArrayOffset = 0; iArrayOffset < 17; iArrayOffset++) { KpCn[iArrayOffset] = new BLOCK8BYTE(); KpDn[iArrayOffset] = new BLOCK8BYTE(); } for (iArrayOffset = 0; iArrayOffset < 32; iArrayOffset++) { // Set bit in KpCn iByteOffset = _bitAddressToByteOffset(iArrayOffset, 8); iBitOffset = _bitAddressToBitOffset(iArrayOffset, 8); bBit = Kp.GetBit(iByteOffset, iBitOffset); KpCn[0].SetBit(iByteOffset, iBitOffset, bBit); // Set bit in KpDn bBit = Kp.GetBit(iByteOffset + 4, iBitOffset); KpDn[0].SetBit(iByteOffset, iBitOffset, bBit); } for (iArrayOffset = 1; iArrayOffset < 17; iArrayOffset++) { // Shift left wrapped KpCn[iArrayOffset].ShiftLeftWrapped(KpCn[iArrayOffset - 1], byteShifts[iArrayOffset - 1]); KpDn[iArrayOffset].ShiftLeftWrapped(KpDn[iArrayOffset - 1], byteShifts[iArrayOffset - 1]); } // Create 17 keys Kn for (iArrayOffset = 0; iArrayOffset < 17; iArrayOffset++) { // Loop through the bits for (iTableOffset = 0; iTableOffset < 48; iTableOffset++) { // Get address if bit iPermOffset = bytePC2[iTableOffset]; iPermOffset--; // Convert to byte and bit offsets iByteOffset = _bitAddressToByteOffset(iPermOffset, 7); iBitOffset = _bitAddressToBitOffset(iPermOffset, 7); // Get bit if (iByteOffset < 4) bBit = KpCn[iArrayOffset].GetBit(iByteOffset, iBitOffset); else bBit = KpDn[iArrayOffset].GetBit(iByteOffset - 4, iBitOffset); // Set bit iByteOffset = _bitAddressToByteOffset(iTableOffset, 6); iBitOffset = _bitAddressToBitOffset(iTableOffset, 6); Ftmp.GetAt(iArrayOffset).SetBit(iByteOffset, iBitOffset, bBit); } } // Return variable return Ftmp; } private static void _createBufferOut( int iBufferInLength, ref byte[] bufferOut, bool bEncrypt ) { // // Create a buffer for the output, which may be trimmed later // // If encrypting... int iOutputLength; if (bEncrypt) { if ((iBufferInLength % KEY_BYTE_LENGTH) != 0) iOutputLength = ((iBufferInLength / KEY_BYTE_LENGTH) + 1) * KEY_BYTE_LENGTH; else iOutputLength = iBufferInLength + KEY_BYTE_LENGTH; } else { if (iBufferInLength < 8) throw new Exception("DES cypher-text must be at least 8 bytes."); if ((iBufferInLength % 8) != 0) throw new Exception("DES cypher-text must be a factor of 8 bytes in length."); iOutputLength = iBufferInLength; } // Create buffer if ((bufferOut == null) || (bufferOut.Length != iOutputLength)) bufferOut = new byte[iOutputLength]; else Array.Clear(bufferOut, 0, bufferOut.Length); } private static void _removePadding(ref byte[] bufferOut) { // // Remove the padding after decrypting // // Get the padding... byte Padding = bufferOut[bufferOut.Length - 1]; if ((Padding == 0) || (Padding > 8)) throw new Exception("Invalid padding on DES data."); // Confirm padding bool bPaddingOk = true; for (int iByteOffset = 1; iByteOffset < Padding; iByteOffset++) { if (bufferOut[bufferOut.Length - 1 - iByteOffset] != Padding) { bPaddingOk = false; break; } } if (bPaddingOk) { // Chop off the padding Array.Resize(ref bufferOut, bufferOut.Length - Padding); } else throw new Exception("Invalid padding on DES data."); } private static void _desAlgorithm(byte[] bufferIn, ref byte[] bufferOut, KEY_SET[] KeySets, bool bEncrypt) { // // Apply the DES algorithm to each block // // Declare a workset set of variables WORKING_SET workingSet = new WORKING_SET(); // encode/decode blocks int iBufferPos = 0; while (true) { // Check buffer position if (bEncrypt) { // If end of buffer... if (iBufferPos >= bufferOut.Length) break; // Calulate remaining bytes int iRemainder = (bufferIn.Length - iBufferPos); if (iRemainder >= 8) workingSet.DataBlockIn.Set(bufferIn, iBufferPos); else { // Copy part-block workingSet.DataBlockIn.Reset(); if (iRemainder > 0) Array.Copy(bufferIn, iBufferPos, workingSet.DataBlockIn.m_data, 0, iRemainder); // Get the padding byte byte Padding = Convert.ToByte(KEY_BYTE_LENGTH - iRemainder); // Add padding to block for (int iByteOffset = iRemainder; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++) workingSet.DataBlockIn.m_data[iByteOffset] = Padding; } } else { // If end of buffer... if (iBufferPos >= bufferIn.Length) break; // Get the next block workingSet.DataBlockIn.Set(bufferIn, iBufferPos); } // if encrypting and not the first block... if ((bEncrypt) && (iBufferPos > 0)) { // Apply succession => XOR M with previous block workingSet.DataBlockIn.Xor(workingSet.DataBlockOut, workingSet.DataBlockIn); } // Apply the algorithm workingSet.DataBlockOut.Set(workingSet.DataBlockIn); _lowLevel_desAlgorithm(workingSet, KeySets, bEncrypt); // If decrypting... if (!bEncrypt) { // Retain the succession if (iBufferPos > 0) workingSet.DataBlockOut.Xor(workingSet.DecryptXorBlock, workingSet.DataBlockOut); // Retain the last block workingSet.DecryptXorBlock.Set(workingSet.DataBlockIn); } // Update buffer out Array.Copy(workingSet.DataBlockOut.m_data, 0, bufferOut, iBufferPos, 8); // Move on iBufferPos += 8; } // Scrub the working set workingSet.Scrub(); } private static void _lowLevel_desAlgorithm(WORKING_SET workingSet, KEY_SET[] KeySets, bool bEncrypt) { // // Apply 1 or 3 keys to a block of data // // Declaration of local variables int iTableOffset; int iArrayOffset; int iPermOffset; int iByteOffset; int iBitOffset; // Loop through keys for (int iKeySetOffset = 0; iKeySetOffset < KeySets.Length; iKeySetOffset++) { // Permute with byteIP workingSet.IP.Reset(); for (iTableOffset = 0; iTableOffset < byteIP.Length; iTableOffset++) { // Get perm offset iPermOffset = byteIP[iTableOffset]; iPermOffset--; // Get and set bit workingSet.IP.SetBit( _bitAddressToByteOffset(iTableOffset, 8), _bitAddressToBitOffset(iTableOffset, 8), workingSet.DataBlockOut.GetBit( _bitAddressToByteOffset(iPermOffset, 8), _bitAddressToBitOffset(iPermOffset, 8) ) ); } // Create Ln[0] and Rn[0] workingSet.Ln[0].Reset(); workingSet.Rn[0].Reset(); for (iArrayOffset = 0; iArrayOffset < 32; iArrayOffset++) { iByteOffset = _bitAddressToByteOffset(iArrayOffset, 8); iBitOffset = _bitAddressToBitOffset(iArrayOffset, 8); workingSet.Ln[0].SetBit(iByteOffset, iBitOffset, workingSet.IP.GetBit(iByteOffset, iBitOffset)); workingSet.Rn[0].SetBit(iByteOffset, iBitOffset, workingSet.IP.GetBit(iByteOffset + 4, iBitOffset)); } // Loop through 17 interations for (int iBlockOffset = 1; iBlockOffset < 17; iBlockOffset++) { // Get the array offset int iKeyOffset; if (bEncrypt != (iKeySetOffset == 1)) iKeyOffset = iBlockOffset; else iKeyOffset = 17 - iBlockOffset; // Set Ln[N] = Rn[N-1] workingSet.Ln[iBlockOffset].Set(workingSet.Rn[iBlockOffset - 1]); // Set Rn[N] = Ln[0] + f(R[N-1],K[N]) for (iTableOffset = 0; iTableOffset < byteE.Length; iTableOffset++) { // Get perm offset iPermOffset = byteE[iTableOffset]; iPermOffset--; // Get and set bit workingSet.RnExpand.SetBit( _bitAddressToByteOffset(iTableOffset, 6), _bitAddressToBitOffset(iTableOffset, 6), workingSet.Rn[iBlockOffset - 1].GetBit( _bitAddressToByteOffset(iPermOffset, 8), _bitAddressToBitOffset(iPermOffset, 8) ) ); } // XOR expanded block with K-block if (bEncrypt != (iKeySetOffset == 1)) workingSet.XorBlock.Xor(workingSet.RnExpand, KeySets[iKeySetOffset].GetAt(iKeyOffset)); else workingSet.XorBlock.Xor(workingSet.RnExpand, KeySets[KeySets.Length - 1 - iKeySetOffset].GetAt(iKeyOffset)); // Set S-Box values workingSet.SBoxValues.Reset(); for (iTableOffset = 0; iTableOffset < 8; iTableOffset++) { // Calculate m and n int m = ((workingSet.XorBlock.GetBit(iTableOffset, 7) ? 1 : 0) << 1) | (workingSet.XorBlock.GetBit(iTableOffset, 2) ? 1 : 0); int n = (workingSet.XorBlock.m_data[iTableOffset] >> 3) & 0x0F; // Get s-box value iPermOffset = byteSBox[(iTableOffset * 4) + m, n]; workingSet.SBoxValues.m_data[iTableOffset] = (byte)(iPermOffset << 4); } // Permute with P -> f workingSet.f.Reset(); for (iTableOffset = 0; iTableOffset < byteP.Length; iTableOffset++) { // Get perm offset iPermOffset = byteP[iTableOffset]; iPermOffset--; // Get and set bit workingSet.f.SetBit( _bitAddressToByteOffset(iTableOffset, 4), _bitAddressToBitOffset(iTableOffset, 4), workingSet.SBoxValues.GetBit( _bitAddressToByteOffset(iPermOffset, 4), _bitAddressToBitOffset(iPermOffset, 4) ) ); } // Rn[N] = Ln[N-1] ^ f workingSet.Rn[iBlockOffset].Reset(); for (iTableOffset = 0; iTableOffset < 8; iTableOffset++) { // Get Ln[N-1] -> A byte A = workingSet.Ln[iBlockOffset - 1].m_data[(iTableOffset >> 1)]; if ((iTableOffset % 2) == 0) A >>= 4; else A &= 0x0F; // Get f -> B byte B = Convert.ToByte(workingSet.f.m_data[iTableOffset] >> 4); // Update Rn[N] if ((iTableOffset % 2) == 0) workingSet.Rn[iBlockOffset].m_data[iTableOffset >> 1] |= Convert.ToByte((A ^ B) << 4); else workingSet.Rn[iBlockOffset].m_data[iTableOffset >> 1] |= Convert.ToByte(A ^ B); } } // X = R16 L16 workingSet.X.Reset(); for (iTableOffset = 0; iTableOffset < 4; iTableOffset++) { workingSet.X.m_data[iTableOffset] = workingSet.Rn[16].m_data[iTableOffset]; workingSet.X.m_data[iTableOffset + 4] = workingSet.Ln[16].m_data[iTableOffset]; } // C = X perm IP workingSet.DataBlockOut.Reset(); for (iTableOffset = 0; iTableOffset < byteRFP.Length; iTableOffset++) { // Get perm offset iPermOffset = byteRFP[iTableOffset]; iPermOffset--; // Get and set bit workingSet.DataBlockOut.SetBit( _bitAddressToByteOffset(iTableOffset, 8), _bitAddressToBitOffset(iTableOffset, 8), workingSet.X.GetBit( _bitAddressToByteOffset(iPermOffset, 8), _bitAddressToBitOffset(iPermOffset, 8) ) ); } } // key loop } #endregion Static Operations ///////////////////////////////////////////////////////////// // Helper Operations private static int _bitAddressToByteOffset(int iTableAddress, int iTableWidth) { int iFtmp = iTableAddress / iTableWidth; return iFtmp; } private static int _bitAddressToBitOffset(int iTableAddress, int iTableWidth) { int iFtmp = BITS_PER_BYTE - 1 - (iTableAddress % iTableWidth); return iFtmp; } ///////////////////////////////////////////////////////////// #region Debug Operations #if DEBUG #if !SILVERLIGHT private static void MicrosoftDESEncrypt(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt, bool bDESMode) { // Declaration of key and IV byte[] bufferTemp = new byte[1024]; byte[] IV; if(bDESMode) IV = new byte[8]; else IV = new byte[8*3]; // Declare a crypto object ICryptoTransform crypto; if (bDESMode) { DESCryptoServiceProvider des = new DESCryptoServiceProvider(); des.Padding = PaddingMode.PKCS7; if (bEncrypt) crypto = des.CreateEncryptor(Key, IV); else crypto = des.CreateDecryptor(Key, IV); } else { TripleDESCryptoServiceProvider tripleDes = new TripleDESCryptoServiceProvider(); tripleDes.Padding = PaddingMode.PKCS7; if (bEncrypt) crypto = tripleDes.CreateEncryptor(Key, IV); else crypto = tripleDes.CreateDecryptor(Key, IV); } // a memory stream for the cyrpto using(MemoryStream ms = new MemoryStream()) { // Create a CryptoStream using the memory stream using (CryptoStream encStream = new CryptoStream(ms, crypto, CryptoStreamMode.Write)) { // Encrypt/decrypt and flush encStream.Write(bufferIn, 0, bufferIn.Length); encStream.Flush(); encStream.FlushFinalBlock(); encStream.Close(); // Get the data into a buffer bufferOut = ms.ToArray(); } } } #endif // #if !SILVERLIGHT #endif // #if DEBUG #if DEBUG #if !SILVERLIGHT public static void _assertBufferMatch(byte[] A, byte[] B) { // Compare outputs Debug.Assert(A.Length == B.Length); for (int iOffset = 0; iOffset < A.Length; iOffset++) Debug.Assert(A[iOffset] == B[iOffset]); } #endif // #if !SILVERLIGHT #endif // #if DEBUG #if DEBUG #if !SILVERLIGHT public static void Test() { // // This function encrypts and encrypts data using our DES algorithm, and // ensures the results are the same as the Microsoft algorithm with default padding settings. // // Declaration of local variables Random rnd = new Random(1); byte[] DesKey, Des3Key; byte[] plainText = null, cypherText = null, plainText2 = null, msCypherText = null, msPlainText2 = null; // Compare the DES algorithm with the Microsoft algorithm for (int iTest = 0; iTest < 100*1000; iTest++) { // Dump progress if ((iTest % 200) == 0) Trace.TraceInformation("Test {0}", iTest); // Generate test data DesKey = DESCrytography.CreateDesKey(rnd); Des3Key = DESCrytography.CreateTripleDesKey(rnd); int iLength = rnd.Next(0, 256); if ((plainText == null) || (plainText.Length != iLength)) plainText = new byte[iLength]; rnd.NextBytes(plainText); // DES Test { // Encrypt using our algorithm DESCrytography.DES(plainText, ref cypherText, DesKey, true); // Decrypt using our algorithm DESCrytography.DES(cypherText, ref plainText2, DesKey, false); // Compare outputs _assertBufferMatch(plainText,plainText2); // Encrypt using Microsoft algorithm MicrosoftDESEncrypt(plainText, ref msCypherText, DesKey, true, true); // Decrypt using Microsoft algorithm MicrosoftDESEncrypt(msCypherText, ref msPlainText2, DesKey, false, true); // Compare outputs _assertBufferMatch(plainText, msPlainText2); // Make sure Microsoft and our algorithms are the same _assertBufferMatch(cypherText, msCypherText); } // TripleDES Test { // Encrypt using our algorithm DESCrytography.TripleDES(plainText, ref cypherText, Des3Key, true); // Decrypt using our algorithm DESCrytography.TripleDES(cypherText, ref plainText2, Des3Key, false); // Compare outputs _assertBufferMatch(plainText, plainText2); // Encrypt using Microsoft algorithm MicrosoftDESEncrypt(plainText, ref msCypherText, Des3Key, true, false); // Decrypt using Microsoft algorithm MicrosoftDESEncrypt(msCypherText, ref msPlainText2, Des3Key, false, false); // Compare outputs _assertBufferMatch(plainText, msPlainText2); // Make sure Microsoft and our algorithms are the same _assertBufferMatch(cypherText, msCypherText); } } // for-loop } #endif // #if !SILVERLIGHT #endif // #if DEBUG #endregion Debug Operations } } namespace BroccoliProducts { using System; using System.Collections.Generic; #if DEBUG using System.Diagnostics; #endif // #if DEBUG using System.IO; using System.Linq; using System.Runtime.InteropServices; using System.Security.Cryptography; using System.Text; /// <summary> /// Declaration of BlowFishCrytography class /// </summary> public static class BlowFishCrytography { ///////////////////////////////////////////////////////////// // Constants public const int BLOWFISH_BLOCK_LENGTH = 8; public const int MIN_KEY_BYTE_LENGTH = 4; public const int MAX_KEY_BYTE_LENGTH = 56; ///////////////////////////////////////////////////////////// #region BlowFish Tables private const int PTABLE_LENGTH = 18; private const int STABLE_LENGTH0 = 4; private const int STABLE_LENGTH1 = 256; private static uint[] BLOWFISH_PTABLE = { 0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c, 0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b }; private static uint[] BLOWFISH_SBOX0 = { 0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16, 0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658, 0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013, 0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e, 0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60, 0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6, 0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a, 0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c, 0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193, 0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1, 0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239, 0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a, 0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3, 0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176, 0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe, 0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706, 0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b, 0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b, 0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463, 0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c, 0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3, 0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a, 0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8, 0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760, 0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db, 0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8, 0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b, 0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33, 0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4, 0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0, 0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c, 0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777, 0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299, 0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705, 0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf, 0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e, 0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa, 0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9, 0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915, 0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f, 0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664, 0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a }; private static uint[] BLOWFISH_SBOX1 = { 0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d, 0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1, 0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65, 0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1, 0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9, 0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737, 0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d, 0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd, 0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc, 0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41, 0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908, 0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af, 0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124, 0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c, 0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908, 0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd, 0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b, 0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e, 0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa, 0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a, 0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d, 0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66, 0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5, 0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84, 0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96, 0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14, 0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca, 0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7, 0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77, 0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99, 0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054, 0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73, 0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea, 0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105, 0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646, 0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285, 0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea, 0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb, 0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e, 0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc, 0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd, 0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20, 0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7 }; private static uint[] BLOWFISH_SBOX2 = { 0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7, 0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af, 0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af, 0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504, 0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4, 0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee, 0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec, 0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b, 0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332, 0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527, 0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58, 0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c, 0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22, 0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17, 0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60, 0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115, 0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99, 0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0, 0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74, 0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d, 0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3, 0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3, 0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979, 0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c, 0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa, 0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a, 0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086, 0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc, 0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24, 0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2, 0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84, 0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c, 0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09, 0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10, 0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe, 0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027, 0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0, 0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634, 0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188, 0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc, 0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8, 0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837, 0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0 }; private static uint[] BLOWFISH_SBOX3 = { 0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742, 0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b, 0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79, 0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6, 0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a, 0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4, 0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1, 0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59, 0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797, 0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28, 0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6, 0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28, 0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba, 0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a, 0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5, 0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f, 0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce, 0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680, 0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd, 0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb, 0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb, 0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370, 0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc, 0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048, 0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc, 0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9, 0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a, 0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f, 0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a, 0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1, 0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b, 0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e, 0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e, 0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f, 0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623, 0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc, 0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a, 0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6, 0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3, 0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060, 0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c, 0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f, 0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6 }; private static uint[][] BLOWFISH_STABLE = { BLOWFISH_SBOX0, BLOWFISH_SBOX1, BLOWFISH_SBOX2, BLOWFISH_SBOX3 }; #endregion BlowFish Tables ///////////////////////////////////////////////////////////// // Structures [StructLayout(LayoutKind.Explicit)] struct DWORD_SPLITTER { ///////////////////////////////////////////////////////// // Attributes [FieldOffset(0)] public uint dw; [FieldOffset(0)] public UInt16 highWord; [FieldOffset(2)] public UInt16 lowWord; [FieldOffset(0)] public byte byte3; [FieldOffset(1)] public byte byte2; [FieldOffset(2)] public byte byte1; [FieldOffset(3)] public byte byte0; ///////////////////////////////////////////////////////// // Operations public void FromBuffer( byte[] buffer, int iOffset ) { byte0 = buffer[iOffset]; byte1 = buffer[iOffset+1]; byte2 = buffer[iOffset+2]; byte3 = buffer[iOffset+3]; } public void ToBuffer( byte[] buffer, int iOffset ) { buffer[iOffset] = byte0; buffer[iOffset+1] = byte1; buffer[iOffset+2] = byte2; buffer[iOffset+3] = byte3; } } ///////////////////////////////////////////////////////////// // Operations public static bool IsValidBlowFishKey(byte[] Key) { // Check buffer if (Key == null) return false; if( (Key.Length < MIN_KEY_BYTE_LENGTH) || (Key.Length > MAX_KEY_BYTE_LENGTH) ) return false; if((Key.Length % 4)!=0) return false; // Return success return true; } public static byte[] CreateBlowFishKey(Random rnd,int iKeyLength) { // Shortcuts if ( (iKeyLength < MIN_KEY_BYTE_LENGTH) || (iKeyLength > MAX_KEY_BYTE_LENGTH) || ((iKeyLength % 4) != 0) ) throw new Exception("Invalid BlowFish key length."); // Declare return variable byte[] Ftmp = new byte[iKeyLength]; // Populate the key rnd.NextBytes(Ftmp); // Return success return Ftmp; } public static void BlowFishWithPadding(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt) { // // Use the same padding that .Net uses for the DES crypto-provider // // If encrypting... if (bEncrypt) { // Create the buffer out int iBufferOut = ((bufferIn.Length / BLOWFISH_BLOCK_LENGTH) + 1) * BLOWFISH_BLOCK_LENGTH; _softCreateBuffer(ref bufferOut, iBufferOut); Array.Copy(bufferIn, bufferOut, bufferIn.Length); // Add the padding int iPadding = bufferOut.Length - bufferIn.Length; #if DEBUG Debug.Assert(iPadding > 0); Debug.Assert(iPadding <= 8); #endif // #if DEBUG byte Padding = Convert.ToByte(iPadding); for (int i1 = 0; i1 < iPadding; i1++) bufferOut[bufferIn.Length + i1] = Padding; } else { // Create the buffer out int iBufferOut = bufferIn.Length; _softCreateBuffer(ref bufferOut, iBufferOut); Array.Copy(bufferIn, bufferOut, bufferIn.Length); } // Call sibling function _blowFish(bufferOut, Key, bEncrypt); // If decrypting... if (!bEncrypt) { // Get the padding byte byte Padding = bufferOut[bufferOut.Length - 1]; if ((Padding < 1) || (Padding > 8)) throw new Exception("Invalid padding in BlowFish cypher-text."); for (byte A = 0; A < Padding; A++) { if(bufferOut[bufferOut.Length - 1 - A] != Padding) throw new Exception("Invalid padding in BlowFish cypher-text."); } // Trim off the extra Array.Resize(ref bufferOut, bufferOut.Length - Padding); } } public static void BlowFish(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt) { // Shortcuts if(bufferIn == null) throw new Exception("Invalid data into BlowFish algorithm"); if(bufferIn.Length==0) throw new Exception("Missing data in BlowFish algorithm"); if((bufferIn.Length % BLOWFISH_BLOCK_LENGTH)!=0) throw new Exception("Invalid length of data into BlowFish algorithm"); // check key if(!IsValidBlowFishKey(Key)) throw new Exception("BlowFish key is invalid"); // Create the buffer-out _softCreateBuffer(ref bufferOut, bufferIn.Length); Array.Copy(bufferIn, bufferOut, bufferIn.Length); // Call sibling function to apply algorithm _blowFish(bufferOut, Key, bEncrypt); } public static void _blowFish(byte[] buffer, byte[] Key, bool bEncrypt) { #if DEBUG Debug.Assert(buffer != null); Debug.Assert(buffer.Length > 0); Debug.Assert((buffer.Length % BLOWFISH_BLOCK_LENGTH) == 0); Debug.Assert(IsValidBlowFishKey(Key)); #endif // #if DEBUG // Declaration of local variables DWORD_SPLITTER xl = new DWORD_SPLITTER(); DWORD_SPLITTER xr = new DWORD_SPLITTER(); byte[] PreviousBlock = new byte[8]; // Create tables uint[] PTable; uint[,] STable; _createTables(Key, out PTable, out STable); // If encrypting... if (bEncrypt) { // loop through the buffer int iBufferPos = 0; while (iBufferPos < buffer.Length) { // If not the first block, xor with previous if (iBufferPos > 0) _xor(buffer, iBufferPos, PreviousBlock, 0, 8); // encipher 8 byte chunk xl.FromBuffer(buffer, iBufferPos); xr.FromBuffer(buffer, iBufferPos + 4); _encipher8ByteChunk(ref xl, ref xr, PTable, STable, true); xl.ToBuffer(buffer, iBufferPos); xr.ToBuffer(buffer, iBufferPos + 4); // Retain this as previous block Array.Copy(buffer, iBufferPos, PreviousBlock, 0, 8); // move on iBufferPos += BLOWFISH_BLOCK_LENGTH; } } else { // loop through the buffer int iBufferPos = 0; byte[] CurrentBlock = new byte[8]; while (iBufferPos < buffer.Length) { // Retain the current raw block Array.Copy(buffer, iBufferPos, CurrentBlock, 0, 8); // encipher 8 byte chunk xl.FromBuffer(buffer, iBufferPos); xr.FromBuffer(buffer, iBufferPos + 4); _encipher8ByteChunk(ref xl, ref xr, PTable, STable, false); xl.ToBuffer(buffer, iBufferPos); xr.ToBuffer(buffer, iBufferPos + 4); // If not the first block... if(iBufferPos > 0) _xor(buffer, iBufferPos, PreviousBlock, 0, 8); // Retain the previous block Array.Copy(CurrentBlock, 0, PreviousBlock, 0, 8); // move on iBufferPos += BLOWFISH_BLOCK_LENGTH; } } } private static void _xor(byte[] TargetBuffer, int iTargetPos, byte[] OperatorBuffer, int iOperatorPos, int iLength) { // Loop through length for (int i1 = 0; i1 < iLength; i1++) TargetBuffer[iTargetPos + i1] ^= OperatorBuffer[iOperatorPos + i1]; } private static void _softCreateBuffer(ref byte[] buffer, int iLength) { // Create or extend buffer if (buffer == null) buffer = new byte[iLength]; else Array.Resize(ref buffer, iLength); } private static void _createTables(byte[] Key, out uint[] PTable, out uint[,] STable) { // declaration of local variables int i1, i2; // Stuff the P and S tables PTable = new uint[BLOWFISH_PTABLE.Length]; for (i1 = 0; i1 < PTABLE_LENGTH; i1++) { PTable[i1] = BLOWFISH_PTABLE[i1]; } STable = new uint[STABLE_LENGTH0,STABLE_LENGTH1]; for (i1 = 0; i1 < 4; i1++) { for (i2 = 0; i2 < 256; i2++) STable[i1, i2] = BLOWFISH_STABLE[i1][i2]; } // update the P-Table int iKeyPos = 0; DWORD_SPLITTER dw = new DWORD_SPLITTER(); for( i1=0; i1 < PTABLE_LENGTH; ++i1 ) { // compose word dw.dw = 0; dw.byte0 = Key[iKeyPos]; dw.byte1 = Key[(iKeyPos + 1) % Key.Length]; dw.byte2 = Key[(iKeyPos + 2) % Key.Length]; dw.byte3 = Key[(iKeyPos + 3) % Key.Length]; uint data = dw.dw; // update P-Table PTable[i1] = PTable[i1] ^ data; // increment position iKeyPos = (iKeyPos + 4) % Key.Length; } // encipher P-Table values DWORD_SPLITTER Left = new DWORD_SPLITTER(); DWORD_SPLITTER Right = new DWORD_SPLITTER(); for( i1=0; i1<PTABLE_LENGTH; i1+=2 ) { // encipher _encipher8ByteChunk(ref Left, ref Right, PTable, STable, true); // update P-Table PTable[i1] = Left.dw; PTable[i1 + 1] = Right.dw; } // encipher the S-Table values for( i1=0; i1<4; ++i1 ) { for( i2=0; i2<256; i2+=2 ) { // encipher _encipher8ByteChunk(ref Left, ref Right, PTable, STable, true); // update S-Table STable[i1,i2] = Left.dw; STable[i1,i2 + 1] = Right.dw; } } } private static void _encipher8ByteChunk(ref DWORD_SPLITTER xl, ref DWORD_SPLITTER xr, uint[] PTable, uint[,] STable, bool bEncrypt) { // If encrypting... if(bEncrypt) { xl.dw ^= PTable[0]; xr.dw ^= _f(xl,STable) ^ PTable[1]; xl.dw ^= _f(xr, STable) ^ PTable[2]; xr.dw ^= _f(xl,STable) ^ PTable[3]; xl.dw ^= _f(xr, STable) ^ PTable[4]; xr.dw ^= _f(xl,STable) ^ PTable[5]; xl.dw ^= _f(xr, STable) ^ PTable[6]; xr.dw ^= _f(xl,STable) ^ PTable[7]; xl.dw ^= _f(xr, STable) ^ PTable[8]; xr.dw ^= _f(xl,STable) ^ PTable[9]; xl.dw ^= _f(xr, STable) ^ PTable[10]; xr.dw ^= _f(xl,STable) ^ PTable[11]; xl.dw ^= _f(xr, STable) ^ PTable[12]; xr.dw ^= _f(xl,STable) ^ PTable[13]; xl.dw ^= _f(xr, STable) ^ PTable[14]; xr.dw ^= _f(xl,STable) ^ PTable[15]; xl.dw ^= _f(xr, STable) ^ PTable[16]; xr.dw ^= PTable[17]; } else { xl.dw ^= PTable[17]; xr.dw ^= _f(xl,STable) ^ PTable[16]; xl.dw ^= _f(xr, STable) ^ PTable[15]; xr.dw ^= _f(xl,STable) ^ PTable[14]; xl.dw ^= _f(xr, STable) ^ PTable[13]; xr.dw ^= _f(xl,STable) ^ PTable[12]; xl.dw ^= _f(xr, STable) ^ PTable[11]; xr.dw ^= _f(xl,STable) ^ PTable[10]; xl.dw ^= _f(xr, STable) ^ PTable[9]; xr.dw ^= _f(xl,STable) ^ PTable[8]; xl.dw ^= _f(xr, STable) ^ PTable[7]; xr.dw ^= _f(xl,STable) ^ PTable[6]; xl.dw ^= _f(xr, STable) ^ PTable[5]; xr.dw ^= _f(xl,STable) ^ PTable[4]; xl.dw ^= _f(xr, STable) ^ PTable[3]; xr.dw ^= _f(xl,STable) ^ PTable[2]; xl.dw ^= _f(xr, STable) ^ PTable[1]; xr.dw ^= PTable[0]; } // Swap over xl and xr uint dwTemp = xl.dw; xl.dw = xr.dw; xr.dw = dwTemp; } private static uint _f(DWORD_SPLITTER x, uint[,] STable) { return (((STable[0, x.byte0] + STable[1, x.byte1]) ^ STable[2, x.byte2]) + STable[3, x.byte3]); } ///////////////////////////////////////////////////////////// // Operations - Debug #region Test Vectors #if DEBUG // Test Keys private static ulong[] TestKeys = { 0x0000000000000000, 0xFFFFFFFFFFFFFFFF, 0x3000000000000000, 0x1111111111111111, 0x0123456789ABCDEF, 0x1111111111111111, 0x0000000000000000, 0xFEDCBA9876543210, 0x7CA110454A1A6E57, 0x0131D9619DC1376E, 0x07A1133E4A0B2686, 0x3849674C2602319E, 0x04B915BA43FEB5B6, 0x0113B970FD34F2CE, 0x0170F175468FB5E6, 0x43297FAD38E373FE, 0x07A7137045DA2A16, 0x04689104C2FD3B2F, 0x37D06BB516CB7546, 0x1F08260D1AC2465E, 0x584023641ABA6176, 0x025816164629B007, 0x49793EBC79B3258F, 0x4FB05E1515AB73A7, 0x49E95D6D4CA229BF, 0x018310DC409B26D6, 0x1C587F1C13924FEF, 0x0101010101010101, 0x1F1F1F1F0E0E0E0E, 0xE0FEE0FEF1FEF1FE, 0x0000000000000000, 0xFFFFFFFFFFFFFFFF, 0x0123456789ABCDEF, 0xFEDCBA9876543210 }; private static ulong[] TestPlainText = { 0x0000000000000000, 0xFFFFFFFFFFFFFFFF, 0x1000000000000001, 0x1111111111111111, 0x1111111111111111, 0x0123456789ABCDEF, 0x0000000000000000, 0x0123456789ABCDEF, 0x01A1D6D039776742, 0x5CD54CA83DEF57DA, 0x0248D43806F67172, 0x51454B582DDF440A, 0x42FD443059577FA2, 0x059B5E0851CF143A, 0x0756D8E0774761D2, 0x762514B829BF486A, 0x3BDD119049372802, 0x26955F6835AF609A, 0x164D5E404F275232, 0x6B056E18759F5CCA, 0x004BD6EF09176062, 0x480D39006EE762F2, 0x437540C8698F3CFA, 0x072D43A077075292, 0x02FE55778117F12A, 0x1D9D5C5018F728C2, 0x305532286D6F295A, 0x0123456789ABCDEF, 0x0123456789ABCDEF, 0x0123456789ABCDEF, 0xFFFFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0xFFFFFFFFFFFFFFFF }; private static ulong[] TestCypherText = { 0x4EF997456198DD78, 0x51866FD5B85ECB8A, 0x7D856F9A613063F2, 0x2466DD878B963C9D, 0x61F9C3802281B096, 0x7D0CC630AFDA1EC7, 0x4EF997456198DD78, 0x0ACEAB0FC6A0A28D, 0x59C68245EB05282B, 0xB1B8CC0B250F09A0, 0x1730E5778BEA1DA4, 0xA25E7856CF2651EB, 0x353882B109CE8F1A, 0x48F4D0884C379918, 0x432193B78951FC98, 0x13F04154D69D1AE5, 0x2EEDDA93FFD39C79, 0xD887E0393C2DA6E3, 0x5F99D04F5B163969, 0x4A057A3B24D3977B, 0x452031C1E4FADA8E, 0x7555AE39F59B87BD, 0x53C55F9CB49FC019, 0x7A8E7BFA937E89A3, 0xCF9C5D7A4986ADB5, 0xD1ABB290658BC778, 0x55CB3774D13EF201, 0xFA34EC4847B268B2, 0xA790795108EA3CAE, 0xC39E072D9FAC631D, 0x014933E0CDAFF6E4, 0xF21E9A77B71C49BC, 0x245946885754369A, 0x6B5C5A9C5D9E0A5A }; #endif // #if DEBUG #endregion Test Vectors #if DEBUG #if !SILVERLIGHT public static void _assertBufferMatch(byte[] A, byte[] B) { // Compare outputs Debug.Assert(A.Length == B.Length); for (int iOffset = 0; iOffset < A.Length; iOffset++) Debug.Assert(A[iOffset] == B[iOffset]); } #endif // #if !SILVERLIGHT #endif // #if DEBUG #if DEBUG public static void Test() { // Declaration of local variables Random rnd = new Random(1); byte[] Key = null; byte[] bufferIn = null; byte[] bufferOut = null; byte[] bufferReturned = null; // Loop through the test vectors for (int iTest = 0; iTest < TestKeys.Length; iTest++) { // Load the key and plain-text Key = BitConverter.GetBytes(TestKeys[iTest]).Reverse().ToArray(); bufferIn = BitConverter.GetBytes(TestPlainText[iTest]).Reverse().ToArray(); // Encrypt with BlowFish BlowFishCrytography.BlowFish(bufferIn, ref bufferOut, Key, true); // Compare with expected result byte[] expectedBufferOut = BitConverter.GetBytes(TestCypherText[iTest]).Reverse().ToArray(); _assertBufferMatch(expectedBufferOut,bufferOut); } // Loop through decrypt-encrypt tests for (int iTest = 0; iTest < 100*1000; iTest++) { // Dump progress if ((iTest % 100) == 0) Trace.TraceInformation("Test {0}", iTest); // Load the key and plain-text Key = CreateBlowFishKey(rnd, MAX_KEY_BYTE_LENGTH); // Create a buffer of data int iLength = rnd.Next(1, 10*1024); _softCreateBuffer(ref bufferIn, iLength); rnd.NextBytes(bufferIn); // Encrypt with BlowFish BlowFishCrytography.BlowFishWithPadding(bufferIn, ref bufferOut, Key, true); // Decrypt with BlowFish BlowFishCrytography.BlowFishWithPadding(bufferOut, ref bufferReturned, Key, false); // Compare buffers _assertBufferMatch(bufferIn, bufferReturned); } } #endif // #if DEBUG } }