zoukankan      html  css  js  c++  java
  • 数论---同余法则定理

    为了时刻能够让自己熟悉同余的运算。
     
    同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:
    1)a≡a(mod d)
    2)a≡b(mod d)→b≡a(mod d)
    3)(a≡b(mod d),b≡c(mod d))→a≡c(mod d)
     
    如果a≡x(mod d),b≡m(mod d),则
    4)a+b≡x+m (mod d)
    5)a-b≡x-m (mod d)
    6)a*b≡x*m (mod d )
    7)a≡b(mod d)则a-b整除d
    转自百度百科。简单的同余运算而已。
    具体数学上---Kunth
     
    a≡b(mod d)->a^n≡b^n(mod d)
      对于这个式子我想废话一下。浙江省赛上的一道打表题。知道当天为星期6.求1^1 + 2^2 +...N^N 天之后为星期几
    也就是求1^1 + 2^2 +...N^N   mod 7 的值。 其中N的规模也有1千万的大小
    我想说 N mod 7 无非是1~6. 
    根据上述的式子。可以知道 1^1 + 2^2 +...N^N   mod 7 可以转化成
    1^1 + 1^8 + ...1^(1+7k)
    2^2 + 2^9 + ...2^(2+7k)
    ...
    6^6 + 6^13+...6^(6+7k)
    k = N/7
    还有N%7的项式也可以简单加上( 利用快速指数取模)
    可以利用求和公式。或者6个式子之和。然后计算即可
     
    ac≡bc(mod d) -> a≡b(mod d) 当c和d互质的时候,其实就是乘上c的逆元得到的这个关系式子
    ac≡bc(mod dc) -> a≡b(mod d) 做差法易得
    除法总结:ac≡bc(mod d) -> a≡b(mod d/gcd(c,d)).
     
    对模的:
    a≡b(mod cd) -> a≡b(mod d) 做差法易得
    a≡b(mod d),a≡b(mod c) -> a≡b(mod lcm(c,d)) 中国剩余定理雏形
  • 相关阅读:
    acm入门 杭电1001题 有关溢出的考虑
    面向对象课后深入学习(C++ 类的静态成员详细讲解)
    Eclipse中导入项目后js报错解决方法
    mysql用户链接数
    配置服务器nginx 教程
    eclipse如何新建项目发布到git
    获取当天开始时间结束时间
    pdf在线加载·
    springmvc配置详解 教程
    hibulder中使用git教程
  • 原文地址:https://www.cnblogs.com/Milkor/p/4388942.html
Copyright © 2011-2022 走看看