zoukankan      html  css  js  c++  java
  • 数据库基础之锁(2. 幻读理解)

    转载自Mysql加锁过程详解(2)-关于mysql 幻读理解,系列都很推荐!在此仅作备份与温故!

    正文

    出现幻读

    首先,mysql 幻读并非是”一个事务内进行两次相同操作居然得到了不一样的结果”,因为它根本不可能发生在使用了 read view / MVCC 的 RR 隔离级别下,这种幻读的定义更适合给 Oracle,Oracle 的事务隔离只有两级,RC 和 Serializable。然后还有很多人辩解说不可重复读是针对某条记录的,幻读是针对记录集合的,这是在自我安慰么?

     
    这里给出 mysql 幻读的比较形象的场景:

    users: id 主键

    1. T1:select * from users where id = 1;
    2. T2:insert into `users`(`id`, `name`) values (1, 'big cat');
    3. T1:insert into `users`(`id`, `name`) values (1, 'big cat');
    • T1 :主事务,检测表中是否有id为1的记录,没有则插入,这是我们期望的正常业务逻辑。
    • T2 :干扰事务,目的在于扰乱T1的正常的事务执行。

    在 RR 隔离级别下,1、2是会正常执行的,3则会报错主键冲突,对于T1的业务来说是执行失败的,这里T1就是发生了幻读,因为T1读取的数据状态并不能支持他的下一步的业务,见鬼了一样。

    Serializable 隔离级别下,1 执行时是会隐式的添加gap共享锁,从而2会被阻塞,3会正常执行,对于T1来说业务是正确的,成功的扼杀了扰乱业务的T2,对于T1来说他读取的状态是可以拿来支持业务的。

    所以mysql的幻读并非什么读取两次返回结果集不同,而是事务在插入事先检测不存在的记录时,惊奇地发现这些数据已经存在了,之前的检测读获取到的数据如同鬼影一般

    这里要灵活的理解读取的意思,第一次select是读取,第二次的insert其实也属于隐式的读取,只不过是在mysql的机制中读取的,插入数据也是要先读取一下有没有主键冲突才能决定是否执行插入。

    不可重复读侧重表达读-读,幻读则是说读-写用写来证实读的是鬼影

    案例

    SELECT VERSION();

     

    例一;读提交

                                                           a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

    SET AUTOCOMMIT=0;

    1.不可重复读

    begin

    begin

    INSERT test VALUES(1,1);

    SELECT * FROM test;

     

    SELECT * FROM test;

     

    commit

    SELECT * FROM test;

     

    COMMIT

    B在一个事务的查询的结果变了,不可重复读

    2.锁

    begin

    begin

    INSERT test VALUES(2,2);

    SELECT * FROM test;

     

    INSERT test VALUES(2,2);

    Lock wait timeout exceeded; try restarting transaction

    COMMIT

    COMMIT

    begin

    INSERT test VALUES(3,3);

    INSERT test VALUES(4,4);

    COMMIT

    BEGIN

    BEGIN

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    INSERT test VALUES(5,5);

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    COMMIT

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    例二:重复读

                                                           a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    1.可重复读

    begin

    begin

    INSERT test VALUES(1,1);

    SELECT * FROM test;

     

    SELECT * FROM test;

     

    commit

    SELECT * FROM test;

     

    COMMIT

    BEGIN

    SELECT * FROM test;

     

    COMMIT

    B在一个事务的查询的没变

    2锁

    begin

    begin

    INSERT test VALUES(2,2);

    SELECT * FROM test;

     

    INSERT test VALUES(2,2);

    Lock wait timeout exceeded; try restarting transaction

    COMMIT

    COMMIT

    3(幻读)

    BEGIN

    BEGIN

    INSERT test VALUES(3,3);

    SELECT * FROM test;

     

    SELECT * FROM test;

     

    COMMIT

    SELECT * FROM test;

     

    INSERT test VALUES(3,3);

    Duplicate entry '3' for key 'PRIMARY'

    COMMIT

    BEGIN

    SELECT * FROM test;

     

    COMMIT

    幻读,b明明查到没有,插入时候提示主键冲突,刚刚查询没有,出现幻觉?

    begin

    INSERT test VALUES(4,4);

    COMMIT

    4.可重复读

    BEGIN

    BEGIN

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    INSERT test VALUES(5,5);

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    COMMIT

    BEGIN

    SELECT COUNT(*) FROM test WHERE a>2;

    SELECT COUNT(*) FROM test WHERE a>2;

       

    COMMIT

    COMMIT

    网上很多说范围啊,count等等都是不对的,不用于幻读

    解决幻读

    InnoDB指出的可以避免幻读:

    http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

    By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

    准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。

    关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

    MySQL manual里还有一段:

    13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

    To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking.

    You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.

    我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

    SELECT * FROM child WHERE id > 100 FOR UPDATE;

    这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

    可以使用show innodb status来查看是否给表加上了锁。

    案例

    例一:幻读

    a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    BEGIN

    BEGIN

    SELECT * FROM test WHERE a='1' FOR UPDATE;

    SELECT * FROM test

     

    INSERT test VALUES(1,1);

    锁住了

    INSERT test VALUES(1,1);

    成功

    COMMIT

     

    COMMIT

    避免幻读可以select锁住,再insert

    例二:未命中,间隙锁

    a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    BEGIN

    BEGIN

    SELECT * FROM test WHERE a='1' FOR UPDATE;

    SELECT * FROM test

     

    INSERT test VALUES(2,2);

    连2也被锁住了?

    INSERT test VALUES(1,1);

    成功

    COMMIT

     

    这次提交成功

    COMMIT

    其他尝试,这种情况无论插入2还是5都被锁住等等

    例三:命中,记录锁

    a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    BEGIN

    BEGIN

    SELECT * FROM test

    SELECT * FROM test

       

    SELECT * FROM test WHERE a='1' FOR UPDATE;

     

    SELECT * FROM test

     

    INSERT test VALUES(2,2);

     

    COMMIT

    COMMIT

    成功

    COMMIT

    COMMIT

    例四:避免幻读(for update 锁住)

    a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    BEGIN

    BEGIN

    SELECT * FROM test

    SELECT * FROM test

       

    SELECT * FROM test WHERE a='2' FOR UPDATE;

     

    SELECT * FROM test

     

    INSERT test VALUES(2,2);

     

    INSERT test VALUES(5,5);

     

    COMMIT

    COMMIT

    例五:幻读与锁

    a

    b

    SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

    SET AUTOCOMMIT=0;

    BEGIN

    BEGIN

    SELECT * FROM test

    SELECT * FROM test

       

    SELECT * FROM test WHERE a='1' FOR UPDATE;

    INSERT test VALUES(5,5);

    插入5成功了

    UPDATE test SET b=33 WHERE a='3'

     

    INSERT test VALUES(2,2);

    2也可以

    UPDATE test SET b=11 WHERE a='1'

    1锁住了

    COMMIT

     

    COMMIT

    SELECT * FROM test

    SELECT * FROM test

       

    以上例子说明,for update时候,id为主键,RR策略时候,锁住了的条件符合的行,但是如果条件找不到任何列,锁住的是整个表,(主键,唯一索引,非唯一索引,(insert,update对于gab锁不通),参考第一章,第七章,第九章)

    ------------------------------------------------------------------
    再来看大神的解释 :链接: http://blog.bitfly.cn/post/mysql-innodb-phantom-read/

    实验

    再看一个实验,要注意,表t_bitfly里的id为主键字段。

    实验三:

    t Session A                 Session B
    |
    | START TRANSACTION;        START TRANSACTION;
    |
    | SELECT * FROM t_bitfly
    | WHERE id <=1
    | FOR UPDATE;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           INSERT INTO t_bitfly
    |                           VALUES (2, 'b');
    |                           Query OK, 1 row affected
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           INSERT INTO t_bitfly
    |                           VALUES (0, '0');
    |                           (waiting for lock ...
    |                           then timeout)
    |                           ERROR 1205 (HY000):
    |                           Lock wait timeout exceeded;
    |                           try restarting transaction
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+

    可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

    MySQL manual里对可重复读里的锁的详细解释:

    http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

    For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.

    ------

    一致性读和提交读,先看实验,实验四:

    t Session A                      Session B
    |
    | START TRANSACTION;             START TRANSACTION;
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    |                                INSERT INTO t_bitfly
    |                                VALUES (2, 'b');
    |                                COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly LOCK IN SHARE MODE;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | |  2 | b     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly FOR UPDATE;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | |  2 | b     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    • 如果使用普通的读,会得到一致性的结果;
    • 如果使用了加锁的读,就会读到“最新的”“提交”读的结;

    本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

    可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

    http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

    If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read.

    SELECT * FROM t_bitfly LOCK IN SHARE MODE;

    结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key locks。

    结论

    mysql的重复读解决了幻读的现象,但是需要加上 select for update/lock in share mode 变成当前读避免幻读,普通读select存在幻读。

    Min是清明的茗
  • 相关阅读:
    Java异常处理机制(转)
    深入探讨 java.lang.ref 包(转)
    一篇不错的讲解Java异常的文章
    Java国际化学习(一)介绍
    Java泛型集合排序(转)
    Java常见异常总结 (转)
    java中的异常处理机制
    深入分析 Java I/O 的工作机制(转)
    java里BufferedReader和Scanner
    JS深入学习知识整理
  • 原文地址:https://www.cnblogs.com/MinPage/p/15048453.html
Copyright © 2011-2022 走看看