zoukankan      html  css  js  c++  java
  • CodeForces

    题目链接:https://vjudge.net/problem/284704/origin

    Approximating a Constant Range 

    When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

    You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

    A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

    Find the length of the longest almost constant range.

    Input

    The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

    Output

    Print a single number — the maximum length of an almost constant range of the given sequence.

    Examples

    Input
    5
    1 2 3 3 2
    Output
    4
    Input
    11
    5 4 5 5 6 7 8 8 8 7 6
    Output
    5

    Note

    In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

    In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].

    题目意思:就是给你一个数组,保证数组中前后两个元素的差<=1,要你找出连续的并且任意两个数相差不超过1的最长串的长度。

    题目分析:可以有以下做法:

    1.dp

    2.优化扩展串的长度

    3.rmq做法

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=1e5+50;
    int a[maxn],dp[maxn];
    int main()
    {
            int n;
            scanf("%d",&n);
            int ans=0;
            for(  int i=1; i<=n; i++ )
            {
                  int x;
                  scanf( "%d",&x );
                  if(  dp[x-1]>dp[x+1] ) ans=max(  ans,i-max(  dp[x-2],dp[x+1] )  );
                  else ans=max(  ans, i-max(dp[x+2],dp[x-1] ) );
                  dp[x]=i;
            }
            printf( "%d
    ",ans );
            return 0;
    }
    DP
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1e6+10;
    int n,cnt,ans,a[maxn];
    int main()
    {
        cin>>n;
        for(int i=1;i<=n;i++)cin>>a[i];
        ans=0;
        int l=1,r=2;
        int one=a[1],two=a[2];//两个元素前后的差<=1 
        while(r<=n){
            while(a[r]==one||a[r]==two) r++;//固定两个元素l不变r往右拓展 
            ans=max(ans,r-l);//确定长度
            one=a[r-1];two=a[r];//更新两个元素
            l=r-1;//l更新 
            while(a[l]==one) l--;//l回溯 
            l++;
        }
        cout<<ans<<endl;
        return 0;
    } 
    边更新边扩展
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1e5+10;
    int n,cnt,ans,a[maxn],dp[maxn][20],fp[maxn][20];
    void init_rmq(){
        for(int i=1;i<=n;i++)dp[i][0]=fp[i][0]=a[i];
        for(int i=1;(1<<i)<=n;i++){
            for(int j=1;j+(1<<i)-1<=n;j++){
                dp[j][i]=max(dp[j][i-1],dp[j+(1<<i-1)][i-1]);
                fp[j][i]=min(fp[j][i-1],fp[j+(1<<i-1)][i-1]);
            }
        }
    }
    int query_max(int l,int r){
        int k=log2(r-l+1);
        return max(dp[l][k],dp[r-(1<<k)+1][k]);
    }
    int query_min(int l,int r){
        int k=log2(r-l+1);
        return min(fp[l][k],fp[r-(1<<k)+1][k]);
    }
    int main()
    {
        cin>>n;
        for(int i=1;i<=n;i++)cin>>a[i];
        ans=0;
        init_rmq();
        int j=1;
        for(int i=1;i<=n;i++)
        {
            while(query_max(j,i)-query_min(j,i)>1&&j<=i)
            {
                j++;
            }
            ans=max(ans,i-j+1);
        }
        cout<<ans<<endl;
        return 0;
    } 
    RMQ
  • 相关阅读:
    [改善Java代码]养成良好习惯,显式声明UID
    [改善Java代码]警惕自增的陷阱
    [改善Java代码]覆写变长方法也循规蹈矩
    [改善Java代码]别让null值和空值威胁到变长方法
    [改善Java代码]避免带有变长参数的方法重载
    [改善Java代码]三元操作符的类型务必一致
    关于Windows下mysql忘记root密码的解决方法
    关于同步VSS服务器上的代码发生Eclipse里面的项目全部不见了
    关于关闭Eclipse的控制台自动跳出
    关于Windows下如何查看端口占用和杀掉进程
  • 原文地址:https://www.cnblogs.com/Mingusu/p/12001295.html
Copyright © 2011-2022 走看看